Skip to main content
Log in

Nonlinear wave propagation in locally dissipative metamaterials via Hamiltonian perturbation approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The cellular microstructure of periodic architected materials can be enriched by local intracellular mechanisms providing innovative distributed functionalities. Specifically, high-performing mechanical metamaterials can be realized by coupling the low-dissipative cellular microstructure with a periodic distribution of tunable damped oscillators, or resonators, vibrating at relatively high amplitudes. The benefit is the actual possibility of combining the design of wave-stopping bands with enhanced energy dissipation properties. This paper investigates the nonlinear dispersion properties of an archetypal mechanical metamaterial, represented by a one-dimensional lattice model characterized by a diatomic periodic cell. The intracellular interatomic interactions feature geometric and constitutive nonlinearities, which determine cubic coupling between the lattice and the resonators. The non-dissipative part of the coupling can be designed to exhibit a softening or a hardening behavior, by independently tuning the geometric and elastic stiffnesses. The nonlinear wavefrequencies and waveforms away from internal resonances are analytically determined by adopting a perturbation technique. The employed approach makes use of tools borrowed from Hamiltonian perturbation theory, together with techniques often used in the context of nearly-integrable Hamiltonian systems.The dispersion spectra are determined in closed, asymptotically approximate, form as a nonlinear function of the time-dependent decreasing amplitude decrement. The invariant manifolds defined by the harmonic periodic motions are also analytically determined. The asymptotic results are further validated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

Relevant data can be made available upon request.

Notes

  1. Knowingly, a sufficient and necessary condition of canonicity is that the Jacobian matrix of the transformation is symplectic.

References

  1. Hussein, M.I., Frazie, M.J.: Metadamping: an emergent phenomenon in dissipative metamaterials. J. Sound Vib. 332(20), 4767–4774 (2013)

    Article  Google Scholar 

  2. Friedrich, K., Breuer, U.: Multifunctionality of Polymer Composites: Challenges and New Solutions. Elsevier, Amsterdam (2015)

    Google Scholar 

  3. Ferreira, A.D.B., Nóvoa, P.R., Marques, A.T.: Multifunctional material systems: a state-of-the-art review. Compos. Struct. 151, 3–35 (2016)

    Article  Google Scholar 

  4. Lincoln, R.L., Scarpa, F., Ting, V.P., et al.: Multifunctional composites: a metamaterial perspective. Multifunct. Mater. 2(4), 043001 (2019)

    Article  Google Scholar 

  5. Arena, A., Taló, M., Snyder, M.P., et al.: Enhancing flutter stability in nanocomposite thin panels by harnessing CNT/polymer dissipation. Mech. Res. Commun. 104, 103495 (2020)

    Article  Google Scholar 

  6. Arena, A., Lacarbonara, W.: Piezoelectrically induced nonlinear resonances for dynamic morphing of lightweight panels. J. Sound Vib. 498, 115951 (2021)

    Article  Google Scholar 

  7. Talò, M., Lanzara, G., Krause, B., et al.: “Sliding Crystals’’ on low-dimensional carbonaceous nanofillers as distributed nanopistons for highly damping materials. ACS Appl. Mater. Interfaces 11(41), 38147–38159 (2019)

    Article  Google Scholar 

  8. Formica, G., Lacarbonara, W.: Asymptotic dynamic modeling and response of hysteretic nanostructured beams. Nonlinear Dyn. 99, 227–248 (2020)

    Article  Google Scholar 

  9. Schaedler, T.A., Carter, W.B.: Architected cellular materials. Ann. Rev. Mater. Res. 46, 187–210 (2016)

    Article  Google Scholar 

  10. Kadic, M., Milton, G.W., van Hecke, M., et al.: 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019)

    Article  Google Scholar 

  11. Wang, Y.-F., Wang, Y.-Z., Wu, B., et al.: Tunable and active phononic crystals and metamaterials. Appl. Mech. Rev. 72(4), 040801 (2020)

    Article  Google Scholar 

  12. Cummer, S.A., Christensen, J., Alù, A.: Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1(3), 1–13 (2016)

    Article  Google Scholar 

  13. Bacigalupo, A., Lepidi, M.: Acoustic wave polarization and energy flow in periodic beam lattice materials. Int. J. Solids Struct. 147, 183–203 (2018)

    Article  MATH  Google Scholar 

  14. D’Alessandro, L., Ardito, R., Braghin, F., et al.: Low frequency 3D ultra-wide vibration attenuation via elastic metamaterial. Sci. Rep. 9(1), 1–8 (2019)

    Article  Google Scholar 

  15. Dal Corso, F., Tallarico, D., Movchan, N.V., et al.: Nested Bloch waves in elastic structures with configurational forces. Philos. Trans. R. Soc. A 377(2156), 20190101 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fang, L., Darabi, A., Mojahed, A., et al.: Broadband non-reciprocity with robust signal integrity in a triangle-shaped nonlinear 1D metamaterial. Nonlinear Dyn. 100, 1–13 (2020)

    Article  Google Scholar 

  17. Meng, H., Huang, X., Chen, Y., et al.: Structural vibration absorption in multilayered sandwich structures using negative stiffness nonlinear oscillators. Appl. Acoust. 182, 108240 (2021)

    Article  Google Scholar 

  18. Zhu, H.-P., Chen, H.-Y.: Parameter modulation of periodic waves and solitons in metamaterials with higher-order dispersive and nonlinear effects. Nonlinear Dyn. 104(2), 1545–1554 (2021)

    Article  Google Scholar 

  19. Wang, C., Kanj, A., Mojahed, A., et al.: Wave redirection, localization, and non-reciprocity in a dissipative nonlinear lattice by macroscopic Landau-Zener tunneling: Theoretical results. J. Appl. Phys. 129(9), 095105 (2021)

    Article  Google Scholar 

  20. Askari, M., Hutchins, D.A., Thomas, P.J., et al.: Additive manufacturing of metamaterials: a review. Addit. Manuf. 36, 101562 (2020)

    Google Scholar 

  21. Deymier, P.A.: Acoustic Metamaterials and Phononic Crystals, Volume 173 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin Heidelberg (2013)

    Google Scholar 

  22. Lepidi, M., Bacigalupo, A.: Wave propagation propertiesof one-dimensional acoustic metamaterials with nonlinear diatomic microstructure. Nonlinear Dyn. 98(4), 2711–2735 (2019)

    Article  MATH  Google Scholar 

  23. Vadalà, F., Bacigalupo, A., Lepidi, M., et al.: Free and forced wave propagation in beam lattice metamaterials with viscoelastic resonators. Int. J. Mech. Sci. 193, 106129 (2021)

    Article  Google Scholar 

  24. Bacigalupo, A., Gambarotta, L.: Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces. J. Mech. Phys. Solids 102, 165–186 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Beli, D., Arruda, J.R.F., Ruzzene, M.: Wave propagationin elastic metamaterial beams and plates with interconnected resonators. Int. J. Solids Struct. 139, 105–120 (2018)

    Article  Google Scholar 

  26. Deng, B., Wang, P., He, Q., et al.: Metamaterials with amplitude gaps for elastic solitons. Nat. Commun. 9, 1–9 (2018)

    Article  Google Scholar 

  27. Carboni, B., Lacarbonara, W.: Nonlinear dynamic response of a new hysteretic rheological device: experiments and computations. Nonlinear Dyn. 83, 23–39 (2016)

    Article  Google Scholar 

  28. Casalotti, A., Lacarbonara, W.: Tailoring of pinched hysteresis for nonlinear vibration absorption via asymptotic analysis. Int. J. Non-Linear Mech. 94, 59–71 (2017)

    Article  Google Scholar 

  29. Casalotti, A., El-Borgi, S., Lacarbonara, W.: Metamaterial beam with embedded nonlinear vibration absorbers. Int. J. Non-Linear Mech. 98, 32–42 (2018)

    Article  Google Scholar 

  30. Muhammad, Lim, C.W., Li, J.T.H., et al.: Lightweight architected lattice phononic crystals with broadband and multiband vibration mitigation characteristics. Extreme Mech. Lett. 41, 100994 (2020)

  31. Wu, L., Geng, Q., Li, Y.-M.: A locally resonant elastic metamaterial based on coupled vibration of internal liquid and coating layer. J. Sound Vib. 468, 115102 (2020)

    Article  Google Scholar 

  32. Manimala, J.M., Sun, C.: Microstructural design studies for locally dissipative acoustic metamaterials. J. Appl. Phys. 115(2), 023518 (2014)

    Article  Google Scholar 

  33. Bacigalupo, A., Gnecco, G., Lepidi, M., et al.: Computational design of innovative mechanical metafilters via adaptive surrogate-based optimization. Comput. Methods Appl. Mech. Eng. 375, 113623 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lepidi, M., Bacigalupo, A.: Multi-parametric sensitivity analysis of the band structure for tetrachiral acoustic metamaterials. Int. J. Solids Struct. 136–137, 186–202 (2018)

    Article  MATH  Google Scholar 

  35. Kochmann, D.M., Hopkins, J.B., Valdevit, L.: Multiscale modeling and optimization of the mechanics of hierarchical metamaterials. MRS Bull. 44, 773–781 (2019)

    Article  Google Scholar 

  36. Zhou, J., Dou, L., Wang, K., et al.: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dyn. 96, 647–665 (2019)

    Article  MATH  Google Scholar 

  37. Lepidi, M., Bacigalupo, A.: Nonlinear dispersion properties of acoustic waveguides with cubic local resonators. In: Developments and Novel Approaches in Biomechanics and Metamaterials, pp. 377–392. Springer, New York (2020)

    Chapter  Google Scholar 

  38. Bukhari, M., Barry, O.: Spectro-spatial analyses of a nonlinear metamaterial with multiple nonlinear local resonators. Nonlinear Dyn. 99, 1539–1560 (2020)

    Article  Google Scholar 

  39. Xu, L., Rahmani, M., Powell, D.A., et al.: Nonlinear Metamaterials, pp. 55–79. Springer International Publishing, Cham (2020)

    Google Scholar 

  40. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Wiley, New York, US (2008)

  41. Fronk, M.D., Leamy, M.J.: Internally resonant wave energy exchange in weakly nonlinear lattices and metamaterials. Phys. Rev. E 100, 032213 (2019)

    Article  Google Scholar 

  42. Settimi, V., Lepidi, M., Bacigalupo, A.: Nonlinear dispersion properties of one-dimensional mechanical metamaterials with inertia amplification. Int. J. Mech. Sci. 201, 106461 (2021)

    Article  Google Scholar 

  43. Vakakis, A.F., King, M.E.: Nonlinear wave transmission in a monocoupled elastic periodic system. J. Acoust. Soc. Am. 98(3), 1534–1546 (1995)

    Article  Google Scholar 

  44. Vakakis, A.F., King, M.E.: Resonant oscillations of a weaklycoupled, nonlinear layered system. Acta Mech. 128(1–2), 59–80 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Manktelow, K., Leamy, M.J., Ruzzene, M.: Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dyn. 63, 193–203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Silva, P.B., Leamy, M.J., Geers, M.G.D., et al.: Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance. Phys. Rev. E 99(6), 063003 (2019)

    Article  Google Scholar 

  47. Wattis, J.A.D.: Quasi-continuum approximations to lattice equations arising from the discrete nonlinear telegraph equation. J. Phys. A Math. Gen. 33(33), 5925 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Bacigalupo, A., Gambarotta, L.: Generalized micropolar continualization of 1D beam lattices. Int. J. Mech. Sci. 155, 554–570 (2019)

    Article  Google Scholar 

  49. Bacigalupo, A., Gambarotta, L., Lepidi, M.: Thermodynamically consistent non-local continualization for masonry-like systems. Int. J. Mech. Sci. 205, 106538 (2021)

    Article  Google Scholar 

  50. Porubov, A.: Wave modulation in a nonlinear acoustic metamaterial. Int. J. Non-Linear Mech. 137, 103788 (2021)

    Article  Google Scholar 

  51. Mojahed, A., Vakakis, A.F.: Certain aspects of the acoustics of a strongly nonlinear discrete lattice. Nonlinear Dyn. 99, 643–659 (2020)

    Article  MATH  Google Scholar 

  52. Romeo, F., Rega, G.: Propagation properties of bi-coupled nonlinear oscillatory chains: analytical prediction and numerical validation. Int. J. Bifurc. Chaos 18(7), 1983–1998 (2008)

    Article  MathSciNet  Google Scholar 

  53. Lazarov, B.S., Jensen, J.S.: Low-frequency band gaps inchains with attached non-linear oscillators. Int. J. Non-Linear Mech. 42(10), 1186–1193 (2007)

    Article  Google Scholar 

  54. Sridhar, A., Kouznetsova, V.G., Geers, M.G.D.: A general multiscale framework for the emergent effective elastodynamics of metamaterials. J. Mech. Phys. Solids 111, 414–433 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. Narisetti, R.K., Leamy, M.J., Ruzzene, M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. 132(3), 031001 (2010)

    Article  Google Scholar 

  56. Narisetti, R., Ruzzene, M., Leamy, M.J.: A perturbation approach for analyzing dispersion and group velocities in two-dimensional nonlinear periodic lattices. J. Vib. Acoust. 133(6), 061020 (2011)

    Article  Google Scholar 

  57. Fang, X., Wen, J., Yin, J., et al.: Wave propagation in nonlinear metamaterial multi-atomic chains based on homotopy method. AIP Adv. 6(12), 121706 (2016)

    Article  Google Scholar 

  58. Fang, X., Wen, J., Yin, J., et al.: Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: theoretical study. Phys. Rev. E 94(5), 052206 (2016)

    Article  Google Scholar 

  59. Fortunati, A., Wiggins, S.: Integrability and strong normal forms for non-autonomous systems in a neighbourhood of an equilibrium. J. Math. Phys. 57(9), 092703 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Fortunati, A., Wiggins, S.: A Lie transform approach to the construction of Lyapunov functions in autonomous and non-autonomous systems. J. Math. Phys. 60(8), 082704 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  61. Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste. Gauthier-Villars, Paris (1892)

    MATH  Google Scholar 

  62. Eliasson, L.H.: Absolutely convergent series expansions for quasi periodic motions. Math. Phys. Electron. J. 2(4), 33 (1996)

  63. Gallavotti, G.: Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable Hamiltonian systems: a review (1994)

  64. Chierchia, L., Falcolini, C.: A direct proof of a theorem by Kolmogorov in Hamiltonian systems. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 21, 541–593 (1994)

    MathSciNet  MATH  Google Scholar 

  65. Nekhoroshev, N.N.: An exponential estimate on the time of stabilty of nearly-integrable Hamiltonian systems. Russ. Math. Surv. 32, 1–65 (1977)

    Article  MATH  Google Scholar 

  66. Nekhoroshev, N.N.: An exponential estimate on the time of stabilty of nearly-integrable Hamiltonian systems II. Trudy Sem. Petrovsk. 5, 5–50 (1979)

    Google Scholar 

  67. Chierchia, L.: Kolmogorov-Arnold-Moser (KAM) Theory. (2009)

  68. Giorgilli, A., Galgani, L.: Formal integrals for an autonomous Hamiltonian system near an equilibrium point. Celest. Mech. 17, 267–280 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ferraz-Mello, S.: Lie Series Perturbation Theory, pp. 139–159. Springer, New York, New York, NY (2007)

    Google Scholar 

  70. Giorgilli, A.: Notes on exponential stability of Hamiltonian systems. Centro di Ricerca Matematica Ennio De Giorgi, Pisa, Italy (2002)

  71. Giorgilli, A., Zehnder, E.: Exponential stability for time dependent potentials. Z. Angew. Math. Phys. (ZAMP) 43, 827–855 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  72. Fortunati, A., Wiggins, S.: Normal forms à la Moser for aperiodically time-dependent Hamiltonians in the vicinity of a hyperbolic equilibrium. Discrete Contin. Dyn. Syst. Ser. S 9(4), 1109–1118 (2016)

    MathSciNet  MATH  Google Scholar 

  73. Fortunati, A., Wiggins, S.: Negligibility of small divisor effects in the normal form theory for nearly-integrable Hamiltonians with decaying non-autonomous perturbations. Celest. Mech. Dyn. Astron. 125(2), 247–262 (2016)

  74. Carboni, B., Arena, A., Lacarbonara, W.: Nonlinear vibration absorbers for ropeway roller batteries control. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, p. 0954406220953454 (2020)

  75. Brillouin, L.: Wave Propagation and Group Velocity, vol. 8. Academic press, Cambridge (2013)

    MATH  Google Scholar 

  76. Giorgilli, A.: On the representation of maps by Lie trasforms. Rendiconti dell’Istituto Lombardo Accademia di Scienze e Lettere, Classe di Scienze 251–277 (2012)

  77. Berdichevsky, V.: Variational principles of continuum mechanics. I: fundamentals. In: Interaction of Mechanics and Mathematics. Springer, Berlin Heidelberg (2009)

    MATH  Google Scholar 

  78. Shilnikov, L.P.: Methods of Qualitative theory in nonlinear dynamics. In: Number v. 1 in Methods of Qualitative Theory in Nonlinear Dynamics. World Scientific, Singapore (1998)

    Google Scholar 

  79. Nayfeh, A.H., Mook, D.T.: Parametric excitations of linear systems having many degrees of freedom. J. Acoust. Soc. Am. 62(2), 375–381 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  80. Eslami, H., Kandil, O.A.: Nonlinear forced vibration of orthotropic rectangular plates using the method of multiple scales. AIAA J. 27(7), 955–960 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  81. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Texts in Applied Mathematics. Springer, New York (2017)

    MATH  Google Scholar 

  82. Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series, and Products. Elsevier Science, Amsterdam (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Italian Ministry of Education, University and Scientific Research under PRIN Grant No. 2017L7X3CS and by the Air Force Office of Scientific Research, Grant N. FA 8655-20-1-7025. The authors gratefully acknowledge the financial support from National Group of Mathematical Physics (GNFM-INdAM), from the Compagnia San Paolo, project MINIERA no. I34I20000380007 and from University of Trento, project UNMASKED 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Fortunati.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 2.1

Let \(P_{\lambda }({\varvec{A}})\) denote the characteristic polynomial of \({\varvec{A}}\) expressed as

$$\begin{aligned} P_{\lambda }({\varvec{A}})= & {} \lambda ^4+\xi \chi \lambda ^3+2 p \lambda ^2 + 2 (\chi -1)\xi \theta \lambda +q \nonumber \\= & {} \lambda ^2 \left[ \lambda ^2+ \xi \chi \lambda + p \right] \nonumber \\&+ \left[ p \lambda ^2 + 2 (\chi -1)\xi \theta \lambda + q\right] \text{, } \end{aligned}$$
(45)

where \(p:=\mu \chi +\theta \) and \(q:=4 (\chi -1) \mu \theta \), respectively.

A sufficient condition for the statement to be true is that the two polynomials between square brackets do not possess real roots. This happens if either \(\xi ^2 \chi ^2 < 4 p \) or \((\chi -1) \xi ^2 \theta < 4 \mu p\), respectively. It is immediate to check that both of them hold under condition (13).

The property \(\alpha _{1,2}<0\) follows from the celebrated Routh-Hurwitz Theorem [82]. More precisely, from (45) it is possible to define

$$\begin{aligned} {\mathfrak {M}}:=\{{\mathfrak {m}}_{i,j}\}= \begin{pmatrix} \xi \chi &{} 1 &{} 0 &{} 0 \\ 2 (\chi -1)\xi \theta &{} 2p &{} \xi \chi &{} 1 \\ 0 &{} q &{} 2 (\chi -1)\xi \theta &{} 2p \\ 0 &{} 0 &{} 0 &{} q \end{pmatrix} \text{, } \end{aligned}$$

and the quantities \(\varDelta _k:=\det \left( {\mathfrak {M}}^{( \le k)}\right) \), where \({\mathfrak {M}}^{( \le k)}:=\{{\mathfrak {m}}_{i,j}\}_{i,j \le k}\) is the square submatrix of \({\mathfrak {M}}\) formed by the first k rows and columns. The property \(\Re \lambda _j <0\) for \(\xi >0\) easily follows from the mentioned Theorem, by observing that either \(\varDelta _1 \equiv \xi \chi \), or

$$\begin{aligned} \varDelta _2&=2 \xi ( \mu \chi ^2 + \theta ), \varDelta _3=4 \theta ^2 \xi ^2 (\chi -1), \\ \varDelta _4&=16 \mu \theta ^3 \xi ^2 (\chi -1)^2 \text{, } \end{aligned}$$

are positive by assumptions on the parameters.

Finally, the property \(\beta _{1,2}>0\) is easily shown by reductio ad absurdum. For this purpose, it is worth recalling that the eigenvalues are non-purely real, as previously shown. On the other hand, Prop. 5.1 states that for any \(\varvec{{\tilde{\zeta }}}:=({\tilde{\xi }},{\tilde{\varrho }},{\tilde{\mu }},{\tilde{\theta }})\) satisfying Eq. (36) and sufficiently small \(\xi \), it turns out that \(\beta _{1,2}=\beta _{1,2}(\varvec{{\tilde{\zeta }}})>0\). Next, suppose by contradiction, that for some other value \(\varvec{{\hat{\zeta }}}\) (under the sole assumption (13)), one has \(\beta _{1}(\varvec{{\hat{\zeta }}})<0\) (the argument for \(\beta _2\) is the same). Hence, once defined, for all \(j=1,...,4\), \(\zeta _j(s_j):=s_j {\tilde{\zeta }}_j + (1-s_j) {\hat{\zeta }}_j\), with \(\varvec{s} \in [0,1]^4\), there exists \(\varvec{s}^*\) such that \(\beta _1(\varvec{\zeta }(\varvec{s}^*))=0\), i.e., \(\lambda _{1} \in {\mathbb {R}}\), which is a contradiction.

1.2 Proof of Prop 5.1

The stated range of variation of \(\varTheta \) follows directly from (36) and the fact that \(\chi >1\) by definition. By assumption, the characteristic polynomial \(P_{\lambda }({\varvec{A}})\) is factorized as

$$\begin{aligned} P_{\lambda }({\varvec{A}})=\prod _{j=1}^{4}(\lambda -\lambda _j)\text{, } \end{aligned}$$
(46)

with \(\lambda _{2k-1}={\bar{\lambda }}_{2k}\), \(k=1,2\). By using the expansions (37) in (14), then substituting back into (46) and finally comparing the obtained expression with (45), one gets at zero order in \(\xi \)

$$\begin{aligned} b_1+b_2&= 2(\mu \chi + \theta ), \end{aligned}$$
(47)
$$\begin{aligned} b_1 b_2&= 4 \theta \mu (\chi -1), \end{aligned}$$
(48)

which give (39). On the other hand, at first order in \(\xi \), the following set of conditions is obtained:

$$\begin{aligned} b_2 a_1 +b_1 a_2&= (\chi -1) \theta , \end{aligned}$$
(49)
$$\begin{aligned} 2(a_1+a_2)&= \chi , \end{aligned}$$
(50)

leading to (38).

Focusing first on the non-resonance property, it is clear from (16) that

$$\begin{aligned}&{\varvec{\varPsi }}={\varvec{\varPsi }}_0+O(\xi ),\nonumber \\&{\varvec{\varPsi }}_0:={\varvec{\varPsi }}|_{(\lambda _1,\lambda _2,\lambda _3, \lambda _4)=(\beta _1,\beta _1,\beta _2,\beta _2)} \text{. } \end{aligned}$$
(51)

In particular, the third row entries of \({\varvec{\varPsi }}_0\) are pure real at order zero in \(\xi \). Hence, as \(\xi _1=O(\xi )\) by definition, a comparison between (12) and (23) yields

$$\begin{aligned} \Im \gamma _{\varvec{\nu }}=O(\xi ) \text{. } \end{aligned}$$
(52)

Moreover, from (51), it is easy to check that

$$\begin{aligned} \det \left( {\varvec{\varPsi }}_0 \right) =&16 (\beta _1 \beta _2)^{-3} (\beta _{2}-\beta _{1})^2 \\&\times (\beta _{1}+\beta _2)^2 (\chi -1)\theta ^2 \text{, } \end{aligned}$$

i.e., \({\varvec{\varPsi }}_0\) is invertible away from \({\mathfrak {R}}\), so is \({\varvec{\varPsi }}\), for sufficiently small \(\xi \). In particular, the fourth column of \({\varvec{\varPsi }}_0^{-1}\) yields

$$\begin{aligned} r_{1,2}&=\mp i [2(b_1-b_2)]^{-1}\sqrt{b_1} + O(\xi ) \text{, }\\ r_{3,4}&=\pm i [2(b_1-b_2)]^{-1}\sqrt{b_2} + O(\xi ) \text{, } \end{aligned}$$

where the expression in terms of the parameters is obtained from (39). The latter implies \(\Re r_j=O(\xi )\), which compared with (52) gives (40).

Focusing finally on Eq. (41), it can be observed that \(\lim _{(\xi ,\theta ) \rightarrow (0,0)^+} (\beta _{1},\beta _{2})=(0,2 \sqrt{\mu \chi })\). Hence, by continuity, for any sufficiently small \(\xi \) and \(\theta \), the curve \((\beta _{1}(\theta ),\beta _{2}(\theta ))\) “starts” inside the region

$$\begin{aligned} {\mathfrak {T}}:=\{\beta _2>3 \beta _1, \,\beta _1>0\} \subset {\mathbb {R}}^2 \text{. } \end{aligned}$$

The statement easily follows for sufficiently small \(\xi \) by using (39). In fact, it is easy to check that, under assumption (36), one has \(b_2>9 b_1\) for all \(\theta \in (0,1)\).

1.3 Expression of the coefficients \(\gamma _{\varvec{\nu }}\)

Recalling that \(\zeta :=\xi _1 \xi _2 \xi _3\) and \(\kappa :=\mu -\eta \) and denoting by \(\varPsi _{ij}\) the elements of matrix \(\varvec{\varPsi }\), the coefficients \(\gamma _{\varvec{\nu }}\) read

$$\begin{aligned} \gamma _{(3,0,0,0)}&=\varPsi _{21}^3 \kappa -\zeta \varPsi _{21}^2 \varPsi _{41} \chi +\zeta \varPsi _{21}^2 \varPsi _{31}^2\\ \gamma _{(0,3,0,0)}&=\varPsi _{22}^3 \kappa -\zeta \varPsi _{22}^2 \varPsi _{42} \chi +\zeta \varPsi _{22}^2 \varPsi _{32}^2\\ \gamma _{(0,0,3,0)}&= \varPsi _{23}^3 \kappa + \zeta \varPsi _{23}^3 (\varPsi _{33}-\chi \varPsi _{43})\\ \gamma _{(0,0,0,3)}&= \varPsi _{24}^3 \kappa + \zeta \varPsi _{24}^2 ( \varPsi _{34}-\varPsi _{44}\chi )\\ \gamma _{(1,1,1,0)}&= 6 \varPsi _{21} \varPsi _{22} \varPsi _{23} \kappa \\&- 2 \zeta \chi (\varPsi _{21} \varPsi _{22} \varPsi _{43} - \varPsi _{21} \varPsi _{23} \varPsi _{42} - \varPsi _{22} \varPsi _{23} \varPsi _{41})\\&+ 2 \zeta (\varPsi _{21}\varPsi _{22},\varPsi _{33}+\varPsi _{21}\varPsi _{23}\varPsi _{32} +\varPsi _{22}\varPsi _{23}\varPsi _{31})\\ \gamma _{(1,0,1,1)}&= 6 \varPsi _{21} \varPsi _{23} \varPsi _{24} \kappa \\&- 2 \zeta \chi (\varPsi _{21} \varPsi _{23} \varPsi _{44} - \varPsi _{21} \varPsi _{24} \varPsi _{43} - \varPsi _{23} \varPsi _{24} \varPsi _{41})\\&+ 2 \zeta (\varPsi _{21}\varPsi _{23}\varPsi _{34}+\varPsi _{21}\varPsi _{24}\varPsi _{33} +\varPsi _{23}\varPsi _{24}\varPsi _{31})\\ \gamma _{(0,1,1,1)}&= 6 \varPsi _{22} \varPsi _{23} \varPsi _{24} \kappa \\&- 2 \zeta \chi (\varPsi _{22} \varPsi _{23} \varPsi _{44} - \varPsi _{22} \varPsi _{24} \varPsi _{43} - \varPsi _{23} \varPsi _{24} \varPsi _{42})\\&+ 2 \zeta (\varPsi _{22}\varPsi _{23}\varPsi _{34}+\varPsi _{22}\varPsi _{24}\varPsi _{33} +\varPsi _{23}\varPsi _{24}\varPsi _{32})\\ \gamma _{(0,0,1,2)}&= 3 \varPsi _{23} \varPsi _{24}^2 \kappa - \zeta \chi (\varPsi _{24}^2 \varPsi _{43}-2 \varPsi _{23} \varPsi _{24} \varPsi _{44}) \\&+ \zeta (\varPsi _{24}^2 \varPsi _{33}+2 \varPsi _{23} \varPsi _{24} \varPsi _{34})\\ \gamma _{(0,1,0,2)}&= 3 \varPsi _{22} \varPsi _{24}^2 \kappa - \zeta \chi (\varPsi _{24}^2 \varPsi _{42}-2 \varPsi _{22} \varPsi _{24} \varPsi _{44}) \\&+ \zeta (\varPsi _{24}^2 \varPsi _{32}+2 \varPsi _{22} \varPsi _{24} \varPsi _{34})\\ \gamma _{(1,0,0,2)}&= 3 \varPsi _{21} \varPsi _{24}^2 \kappa -\zeta \chi (\varPsi _{24}^2 \varPsi _{41}-2 \varPsi _{21} \varPsi _{24} \varPsi _{44}) \\&+ \zeta (\varPsi _{24}^2 \varPsi _{31}+2 \varPsi _{21} \varPsi _{24} \varPsi _{34})\\ \gamma _{(0,0,2,1)}&= 3 \varPsi _{23}^2 \varPsi _{24} \kappa - \zeta \chi (\varPsi _{23}^2 \varPsi _{44}-2 \varPsi _{23} \varPsi _{24} \varPsi _{43}) \\&+ \zeta (\varPsi _{22}^2 \varPsi _{34}+2 \varPsi _{22} \varPsi _{24} \varPsi _{32})\\ \gamma _{(2,0,1,0)}&= 3 \varPsi _{21}^2 \varPsi _{23} \kappa -\zeta \chi (\varPsi _{21}^2 \varPsi _{43}-2 \varPsi _{21} \varPsi _{23} \varPsi _{41}) \\ \gamma _{(2,0,0,1)}&= 3 \varPsi _{21}^2 \varPsi _{24} \kappa - \zeta \chi (\varPsi _{21}^2 \varPsi _{44}-2 \varPsi _{22} \varPsi _{24} \varPsi _{42}) \\&+ \zeta (\varPsi _{22}^2 \varPsi _{34}+2 \varPsi _{22} \varPsi _{24} \varPsi _{32})\\ \gamma _{(0,1,2,0)}&= 3 \varPsi _{22} \varPsi _{23}^2 \kappa - \zeta \chi (\varPsi _{23}^2 \varPsi _{42}-2 \varPsi _{22} \varPsi _{23} \varPsi _{43}) \\&+ \zeta (\varPsi _{23}^2 \varPsi _{32}+2 \varPsi _{22} \varPsi _{23} \varPsi _{33})\\ \gamma _{(1,0,2,0)}&= 3 \varPsi _{21} \varPsi _{23}^2 \kappa -\zeta \chi (\varPsi _{23}^2 \varPsi _{41}-2 \varPsi _{21} \varPsi _{23} \varPsi _{43}) \\&+ \zeta (\varPsi _{23}^2 \varPsi _{31}+2 \varPsi _{21} \varPsi _{23} \varPsi _{33})\\ \gamma _{(0,2,1,0)}&= 3 \varPsi _{22}^2 \varPsi _{23} \kappa - \zeta \chi (\varPsi _{22}^2 \varPsi _{43}-2 \varPsi _{22} \varPsi _{23} \varPsi _{42}) \\&+ \zeta (\varPsi _{22}^2 \varPsi _{33}+2 \varPsi _{22} \varPsi _{23} \varPsi _{32})\\ \gamma _{(2,0,1,0)}&= 3 \varPsi _{21}^2 \varPsi _{23} \kappa - \zeta \chi (\varPsi _{21}^2 \varPsi _{43}-2 \varPsi _{21} \varPsi _{23} \varPsi _{41}) \\&+ \zeta (\varPsi _{21}^2 \varPsi _{33}+2 \varPsi _{21} \varPsi _{23} \varPsi _{31})\\ \gamma _{(1,2,0,0)}&= 3 \varPsi _{21} \varPsi _{22}^2 \kappa -\zeta \chi (\varPsi _{22}^2 \varPsi _{41} -2 \varPsi _{21} \varPsi _{22} \varPsi _{42})\\&+ \zeta (\varPsi _{22}^2 \varPsi _{31}+ 2 \varPsi _{21} \varPsi _{22} \varPsi _{32})\\ \gamma _{(2,1,0,0)}&= 3 \varPsi _{21}^2 \varPsi _{22} \kappa -\zeta \chi (\varPsi _{21}^2 \varPsi _{42} -2 \varPsi _{21} \varPsi _{22} \varPsi _{41})\\&+\zeta (\varPsi _{21}^2 \varPsi _{32}+ 2 \varPsi _{21} \varPsi _{22} \varPsi _{31}) \end{aligned}$$

Remark A.1

It can be noted that \(\zeta \) vanishes in the “zero dissipation limit” \(\xi _1=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortunati, A., Bacigalupo, A., Lepidi, M. et al. Nonlinear wave propagation in locally dissipative metamaterials via Hamiltonian perturbation approach. Nonlinear Dyn 108, 765–787 (2022). https://doi.org/10.1007/s11071-022-07199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07199-8

Keywords

Navigation