Skip to main content
Log in

Nonlocal Euler–Bernoulli beam theories with material nonlinearity and their application to single-walled carbon nanotubes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 05 August 2022

This article has been updated

Abstract

Although the small-scale effect and the material nonlinearity significantly impact the mechanical properties of nanobeams, their combined effects have not attracted the interest of researchers. The present paper proposes two new nonlinear nonlocal Euler–Bernoulli theories to model mechanical properties corresponding to extensible or inextensible nanobeams. Two new theories consider the material nonlinearity and the small-scale effect induced by the nonlocal effect. The new models are used to analyze the static bending and the forced vibrations for single-walled carbon nanotubes (SWCNTs). The results indicate that the material nonlinearity and the nonlocal effect significantly impact SWCNT’s mechanical properties. Therefore, neglecting the two factors may cause qualitative mistakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. Elishakoff, I., Dujat, K., Muscolino, G., et al.: Carbon Nanotubes and Nanosensors: Vibration, Buckling and Balistic Impact. Wiley, London (2013)

    Google Scholar 

  2. Eichler, A., del Álamo Ruiz, M., Plaza, J.A., et al.: Strong coupling between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 109(2), 025503 (2012)

    Article  Google Scholar 

  3. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007)

    Article  MATH  Google Scholar 

  4. Ghaffari, S.S., Ceballes, S., Abdelkefi, A.: Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings. Nonlinear Dyn. 100(2), 1013–1035 (2020)

    Article  Google Scholar 

  5. Rafii-Tabar, H., Ghavanloo, E., Fazelzadeh, S.A.: Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 638, 1–97 (2016)

    Article  MathSciNet  Google Scholar 

  6. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41(3–5), 305–312 (2003)

    Article  Google Scholar 

  7. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  8. Lee, H., Hsu, J.C., Chang, W.J.: Frequency shift of carbon-nanotube-based mass sensor using nonlocal elasticity theory. Nanoscale Res. Lett. 5, 1774 (2010)

    Article  Google Scholar 

  9. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

    Article  Google Scholar 

  10. Güven, U.: Transverse vibrations of single-walled carbon nanotubes with initial stress under magnetic field. Compos. Struct. 114, 92–98 (2014)

    Article  Google Scholar 

  11. Cordero, N.M., Forest, S., Busso, E.P.: Second strain gradient elasticity of nano-objects. J. Mech. Phys. Solids 97, 92–124 (2016)

    Article  MathSciNet  Google Scholar 

  12. Colombo, L., Giordano, S.: Nonlinear elasticity in nanostructured materials. Rep. Prog. Phys. 74(11), 116501 (2011)

    Article  MathSciNet  Google Scholar 

  13. Chen, H., Zarkevich, N.A., Levitas, V.I., et al.: Fifth-degree elastic energy for predictive continuum stress–strain relations and elastic instabilities under large strain and complex loading in silicon. npj Comput. Mater. 6(1), 1–8 (2020)

    Article  Google Scholar 

  14. Cadelano, E., Palla, P.L., Giordano, S., Colombo, L.: Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 102(23), 235502 (2009)

    Article  Google Scholar 

  15. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  Google Scholar 

  16. Wang, Y., Fang, D., Soh, A.K., Liu, B.: A molecular mechanics approach for analyzing tensile nonlinear deformation behavior of single-walled carbon nanotubes. Acta. Mech. Sin. 23(6), 663–671 (2007)

    Article  MATH  Google Scholar 

  17. Chandel, V.S., Wang, G., Talha, M.: Advances in modelling and analysis of nano structures: a review. Nanotechnol. Rev. 9(1), 230–258 (2020)

    Article  Google Scholar 

  18. Huang, K., Zhang, S., Li, J., Li, Z.: Nonlocal nonlinear model of Bernoulli–Euler nanobeam with small initial curvature and its application to single-walled carbon nanotubes. Microsyst. Technol. 25(11), 4303–4310 (2019)

    Article  Google Scholar 

  19. Jin, L., Li, L.: Nonlinear dynamics of silicon nanowire resonator considering nonlocal effect. Nanoscale Res. Lett. 12, 331 (2017)

    Article  Google Scholar 

  20. Ansari, R., Ramezannezhad, H., Gholami, R.: Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment. Nonlinear Dyn. 67(3), 2241–2254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, L., Hu, Y.: Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 107, 77–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, K., Cai, X., Wang, M.: Bernoulli-Euler beam theory of single-walled carbon nanotubes based on nonlinear stress-strain relationship. Mater. Res. Express 7(12), 125003 (2020)

    Article  Google Scholar 

  23. Guo, W., Guo, Y.: Giant axial electrostrictive deformation in carbon nanotubes. Phys. Rev. Lett. 91(11), 115501 (2003)

    Article  Google Scholar 

  24. Huang, K., Yao, J.: Beam theory of thermal–electro-mechanical coupling for single-wall carbon nanotubes. Nanomaterials 11(4), 923 (2021)

    Article  MathSciNet  Google Scholar 

  25. Askes, H., Aifantis, E.C.: Gradient elasticity and flexural wave dispersion in carbon nanotubes. Phys. Rev. B 80(19), 195412 (2009)

    Article  Google Scholar 

  26. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90(23), 231904 (2007)

    Article  Google Scholar 

  28. Pradhan, S.C., Phadikar, J.K.: Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys. Lett. A 373(11), 1062–1069 (2009)

    Article  MATH  Google Scholar 

  29. Jalaei, M.H., Arani, A.G., Tourang, H.: On the dynamic stability of viscoelastic graphene sheets. Int. J. Eng. Sci. 132, 16–29 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao, J., Guo, X., Lu, L.: Small size effect on the wrinkling hierarchy in constrained monolayer graphene. Int. J. Eng. Sci. 131, 19–25 (2018)

    Article  Google Scholar 

  31. Duan, W.H., Wang, C.M., Zhang, Y.Y.: Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101(2), 024305 (2007)

    Article  Google Scholar 

  32. Huang, K., Yin, Y., Qu, B.: Tight-binding theory of graphene mechanical properties. Microsyst. Technol. 27, 3851–3858 (2021)

    Article  Google Scholar 

  33. Huang, K., Yin, Y., Wu, J.Y.: A nonlinear plate theory for the monolayer graphene. Acta Phys. Sin. 63, 156201 (2014)

    Article  Google Scholar 

  34. Washizu, K.: Variational Methods in Elasticity and Plasticity. Pergamon, Oxford (1975)

    MATH  Google Scholar 

  35. Lacarbonara, W.: Nonlinear Structural Mechanics Nonlinear Structural Mechanics, Theory, Dynamical Phenomena and Modeling. Springer, Berlin (2013)

    MATH  Google Scholar 

  36. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  37. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2008)

    MATH  Google Scholar 

  38. Nayfeh, A.H., Nayfeh, J.F., Mook, D.T.: On methods for continuous systems with quadratic and cubic nonlinearities. Nonlinear Dyn. 3(2), 145–162 (1992)

    Article  Google Scholar 

  39. Emam, S.A., Nayfeh, A.H.: Non-linear response of buckled beams to 1: 1 and 3: 1 internal resonances. Int. J. Non-Linear Mech. 52, 12–25 (2013)

    Article  Google Scholar 

  40. Arafat, H.N., Nayfeh, A.H.: Non-linear responses of suspended cables to primary resonance excitations. J. Sound Vib. 266(2), 325–354 (2003)

    Article  Google Scholar 

  41. Luongo, A., Egidio, A.D.: Bifurcation equations through multiple-scales analysis for a continuous model of a planar beam. Nonlinear Dyn. 41(1), 171–190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Di Egidio, A., Luongo, A., Paolone, A.: Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams. Int. J. Non-linear Mech. 42(1), 88–98 (2007)

    Article  MATH  Google Scholar 

  43. Lacarbonara, W., Yabuno, H.: Refined models of elastic beams undergoing large in-plane motions: theory and experiment. Int. J. Solids Struct. 43(17), 5066–5084 (2006)

    Article  MATH  Google Scholar 

  44. Lacarbonara, W., Rega, G., Nayfeh, A.H.: Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int. J. Non-linear Mech. 38(6), 851–872 (2003)

    Article  MATH  Google Scholar 

  45. Lacarbonara, W.: Direct treatment and discretizations of non-linear spatially continuous systems. J. Sound Vib. 221(5), 849–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non-linear Mech. 34(5), 901–924 (1999)

    Article  MATH  Google Scholar 

  47. Luongo, A., Paolone, A.: On the reconstitution problem in the multiple time-scale method. Nonlinear Dyn. 19(2), 135–158 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Huang, K., Feng, Q., Qu, B.: Bending aeroelastic instability of the structure of suspended cable-stayed beam. Nonlinear Dyn. 87(4), 2765–2778 (2017)

    Article  MATH  Google Scholar 

  49. Di Nino, S., Luongo, A.: Nonlinear aeroelastic behavior of a base-isolated beam under steady wind flow. Int. J. Non-linear Mech. 119, 103340 (2020)

    Article  Google Scholar 

  50. Arena, A., Lacarbonara, W.: Piezoelectrically induced nonlinear resonances for dynamic morphing of lightweight panels. J. Sound Vib. 498, 115951 (2021)

    Article  Google Scholar 

  51. Kis, A., Zettl, A.: Nanomechanics of carbon nanotubes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366(1870), 1591–1611 (2008)

    Article  Google Scholar 

  52. Genoese, A., Genoese, A., Salerno, G.: Buckling and post-buckling analysis of single wall carbon nanotubes using molecular mechanics. Appl. Math. Model. 83, 777–800 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Fang, C., Kumar, A., Mukherjee, S.: Finite element analysis of single-walled carbon nanotubes based on a rod model including in-plane cross-sectional deformation. Int. J. Solids Struct. 50(1), 49–56 (2013)

    Article  Google Scholar 

  54. Huang, K., Wu, J., Yin, Y.: An atomistic-based nonlinear plate theory for hexagonal boron nitride. Nanomaterials 11, 3113 (2021)

    Article  Google Scholar 

  55. Wang, Q., Wang, C.M.: The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18(7), 075702 (2007)

    Article  Google Scholar 

  56. Strozzi, M., Pellicano, F.: Nonlinear resonance interaction between conjugate circumferential flexural modes in single-walled carbon nanotubes. Shock Vib. 33 (2019)

  57. Smirnov, V.V., Manevitch, L.I.: Semi-inverse method in nonlinear mechanics: application to couple shell-and beam-type oscillations of single-walled carbon nanotubes. Nonlinear Dyn. 93(1), 205–218 (2018)

    Article  Google Scholar 

  58. Strozzi, M., Smirnov, V.V., Manevitch, L.I., et al.: Nonlinear vibrations and energy exchange of single-walled carbon nanotubes. Radial breathing modes. Compos. Struct. 184, 613–632 (2018)

    Article  Google Scholar 

  59. Yan, J.W., Zhang, L.W., Liew, K.M.: A multiscale computational framework for the analysis of graphene involving geometrical and material nonlinearities. Comput. Methods Appl. Mech. Eng. 310, 208–232 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Chandraseker, K., Mukherjee, S., Paci, J.T., Schatz, G.C.: An atomistic-continuum Cosserat rod model of carbon nanotubes. J. Mech. Phys. Solids 57(6), 932–958 (2009)

    Article  Google Scholar 

  61. Izadi, R., Tuna, M., Trovalusci, P., Ghavanloo, E.: Torsional characteristics of carbon nanotubes: micropolar elasticity models and molecular dynamics simulation. Nanomaterials 11(2), 453 (2021)

    Article  Google Scholar 

  62. Izadi, R., Tuna, M., Trovalusci, P., Fantuzzi, N.: Bending characteristics of carbon nanotubes: micropolar elasticity models and molecular dynamics simulations. Mech. Adv. Mater. Struct. 2021, 1–18 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11562009 and 12050001).

Funding

The National Natural Science Foundation of China (Grant No. 11562009 and 12050001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of Eq. (25)

Appendix: Derivation of Eq. (25)

The principle of virtual work for the present dynamical problem is written as [34]

$$ \begin{aligned} &\int\limits_{{t_{1} }}^{{t_{2} }} {\left\{ {\iiint\limits_{V} {\sigma_{xx} \delta \varepsilon_{xx} }dxdydz} \right.} - \delta \iiint\limits_{V} {\frac{\rho }{2}\left[ {\left( {\frac{\partial u}{{\partial t}}} \right)^{2} } \right.} \hfill \\ &\quad \left. {\left. { + \left( {\frac{\partial w}{{\partial t}}} \right)^{2} } \right]dxdydz - \int\limits_{0}^{l} {\overline{F}\delta wdx} - N\delta u} \right\}dt = 0. \hfill \\ \end{aligned} $$
(A1)

here \(\rho\) is the density of the beam. For an inextensional beam, the longitudinal deformation \(u\) is mainly induced by the transverse deformation \(w\) and can be written as [37]: \(\partial u/\partial x \approx - \left( {\partial w/\partial x} \right)^{2} /2\). Integrating this equation with respect to \(x\) and using the boundary condition \(u = 0\) at \(x = 0\), we have \(u \approx - \int\limits_{0}^{x} {\left[ {\left( {\partial w/\partial s} \right)^{2} /2} \right]\,} ds.\) Therefore, the virtual work of the axial load and the longitudinal velocity is

$$ N\delta u = - N\delta \int\limits_{0}^{x} {\frac{1}{2}\left( {\frac{\partial w}{{\partial s}}} \right)^{2} \,} ds $$
(A2)
$$ \frac{\partial u}{{\partial t}} \approx - \frac{1}{2}\frac{\partial }{\partial t}\int\limits_{0}^{s} {\left( {\frac{\partial w}{{\partial s}}} \right)^{2} \,} ds. $$
(A3)

Substituting Eqs. (A2), (A3) and Eq. (21) into Eq. (A1), and considering \(M = \iint\limits_{A} {z\sigma_{xx} dA}\), \(N = \iint\limits_{A} {\sigma_{xx} dA}\), we have

$$ \begin{gathered} - \int\limits_{{t_{1} }}^{{t_{2} }} {\left\{ {\int\limits_{0}^{l} {M\delta \left[ {\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{1}{2}\left( {\frac{\partial w}{{\partial x}}} \right)^{2} \frac{{\partial^{2} w}}{{\partial x^{2} }}} \right]dx} } \right.} \hfill \\ \quad + \delta \int\limits_{0}^{l} {\frac{m}{2}\left\{ {\frac{1}{4}\left[ { - \frac{\partial }{\partial t}\int\limits_{0}^{s} {\left( {\frac{\partial w}{{\partial s}}} \right)^{2} \,} ds} \right]^{2} } \right.} \hfill \\ \quad + \left. {\left( {\frac{\partial w}{{\partial t}}} \right)^{2} } \right\}dx + \int\limits_{0}^{l} {\overline{F}\delta wdx} \left. { + N\delta \left[ {\frac{1}{2}\left( {\frac{\partial w}{{\partial x}}} \right)^{2} } \right]} \right\}dt = 0 \hfill \\ \end{gathered} $$
(A4)

By performing complex but straightforward calculations, including integrations by parts on Eq. (A4), we have

$$ \begin{gathered} \int\limits_{{t_{1} }}^{{t_{2} }} {\left\{ {\int\limits_{0}^{l} {\left\{ {\frac{{\partial^{2} M}}{{\partial x^{2} }} + \frac{1}{2}\frac{\partial }{\partial x}\left[ {\frac{\partial M}{{\partial x}}\left( {\frac{\partial w}{{\partial x}}} \right)^{2} } \right] + N\frac{{\partial^{2} w}}{{\partial x^{2} }}} \right.} } \right.} - m\frac{{\partial^{2} w}}{{\partial t^{2} }} - \frac{m}{2}\frac{\partial }{\partial x}\left\{ {\frac{\partial w}{{\partial x}}} \right. \hfill \\ \left. {\left. {\left. {\int\limits_{l}^{x} {\left[ {\frac{{\partial^{2} }}{{\partial t^{2} }}\int\limits_{0}^{x} {\left( {\frac{\partial w}{{\partial s}}} \right)^{2} ds} } \right]ds} } \right\} - \overline{F}} \right\}\delta w\,dx + {\text{boundary}}\,{\text{terms}}} \right\}dt = 0. \hfill \\ \end{gathered} $$
(A5)

Since the quantity \(\delta w\) is arbitrary, we have

$$ \begin{aligned} &\frac{{\partial^{2} M}}{{\partial x^{2} }} + \frac{1}{2}\frac{\partial }{\partial x}\left[ {\frac{\partial M}{{\partial x}}\left( {\frac{\partial w}{{\partial x}}} \right)^{2} } \right] + N\frac{{\partial^{2} w}}{{\partial x^{2} }} - m\frac{{\partial^{2} w}}{{\partial t^{2} }} \hfill \\ &\quad - \frac{m}{2}\frac{\partial }{\partial x}\left\{ {\frac{\partial w}{{\partial x}}\int\limits_{l}^{x} {\left[ {\frac{{\partial^{2} }}{{\partial t^{2} }}\int\limits_{0}^{x} {\left( {\frac{\partial w}{{\partial s}}} \right)^{2} ds} } \right]ds} } \right\} - \overline{F} = 0. \hfill \\ \end{aligned} $$
(A6)

Equation (25) can be obtained by moving the inertia and load terms to the right side of Eq. (A6).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Qu, B., Xu, W. et al. Nonlocal Euler–Bernoulli beam theories with material nonlinearity and their application to single-walled carbon nanotubes. Nonlinear Dyn 109, 1423–1439 (2022). https://doi.org/10.1007/s11071-022-07615-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07615-z

Keywords

Navigation