Skip to main content
Log in

Hyperchaotic memristive ring neural network and application in medical image encryption

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Neural networks are favored by academia and industry because of their diversity of dynamics. However, it is difficult for ring neural networks to generate complex dynamical behaviors due to their special structure. In this paper, we present a memristive ring neural network (MRNN) with four neurons and one non-ideal flux-controlled memristor. The memristor is used to describe the effect of external electromagnetic radiation on neurons. The chaotic dynamics of the MRNN is investigated in detail by employing phase portraits, bifurcation diagrams, Lyapunov exponents and attraction basins. Research results show that the MRNN not only can generate abundant chaotic and hyperchaotic attractors but also exhibits complex multistability dynamics. Meanwhile, an analog MRNN circuit is experimentally implemented to verify the numerical simulation results. Moreover, a medical image encryption scheme is constructed based on the MRNN from a perspective of practical engineering application. Performance evaluations demonstrate that the proposed medical image cryptosystem has several advantages in terms of keyspace, information entropy and key sensitivity, compared with cryptosystems based on other chaotic systems. Finally, hardware experiment using the field-programmable gate array (FPGA) is carried out to verify the designed cryptosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files

References

  1. Hopfield, J.J.: Neural network and physical system with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79, 2554–2558 (1982)

    MathSciNet  MATH  Google Scholar 

  2. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    MathSciNet  Google Scholar 

  3. Yang, H., Wang, B., Yao, Q., et al.: Efficient hybrid multi-faults location based on hopfield neural network in 5G coexisting radio and optical wireless networks. IEEE Trans. Cogn. Commun. Netw. 5(4), 1218–1228 (2019)

    Google Scholar 

  4. Wang, X., Li, Z.: A color image encryption algorithm based on Hopfield chaotic neural network. Opt. Lasers Eng. 115, 107–118 (2019)

    Google Scholar 

  5. Yang, X., Yuan, Q.: Chaos and transient chaos in simple Hopfield neural networks. Neurocomputing 69(1—-3), 232–241 (2005)

    Google Scholar 

  6. Rech, P.: Chaos and hyperchaos in a Hopfield neural network. Neurocomputing 74(17), 3361–3364 (2011)

    Google Scholar 

  7. Bao, B., Chen, C., Bao, H., et al.: Dynamical effects of neuron activation gradient on Hopfield neural network: numerical analyses and hardware experiments. Int. J. Bifurcat. Chaos 29(4), 1930010 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Lin, H., Wang, C., Chen, C., et al.: Neural bursting and synchronization emulated by neural networks and circuits. IEEE Trans. Circuits Syst. I-Regul. Pap. 68(08), 3397–3410 (2021)

    Google Scholar 

  9. Njitacke, Z., Isaac, S., Kengne, J., et al.: Extremely rich dynamics from hyperchaotic Hopfield neural network: hysteretic dynamics, parallel bifurcation branches, coexistence of multiple stable states and its analog circuit implementation. Eur. Phys. J. Special Top. 229(6), 1133–1154 (2020)

    Google Scholar 

  10. Strukov, D., Snider, G., Stewart, D., et al.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Google Scholar 

  11. Wu, J., Ma, S.: Coherence resonance of the spiking regularity in a neuron under electromagnetic radiation. Nonlinear Dyn. 96(3), 1895–1908 (2019)

    MathSciNet  Google Scholar 

  12. Lin, H., Wang, C., Yao, W., et al.: Chaotic dynamics in a neural network with different types of external stimuli. Commun. Nonlinear Sci. Numer. Simul. 90, 105390 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Etémé, A., Tabi, C., Beyala, J., et al.: Chaos break and synchrony enrichment within Hindmarsh-Rose-type memristive neural models. Nonlinear Dyn. 105(1), 785–795 (2021)

    Google Scholar 

  14. Zhang, S., Zheng, J., Wang, X., et al.: A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability. Chaos, Solitons Fractals 145, 110761 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Li, Q., Tang, S., Zeng, H., et al.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78(2), 1087–1099 (2014)

    MATH  Google Scholar 

  16. Chen, C., Bao, H., Chen, M., et al.: Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: Numerical simulations and breadboard experiments. AEU-Int. J. Electron. Commun. 111, 152894 (2019)

    Google Scholar 

  17. Bao, B., Yang, Q., Zhu, L., et al.: Chaotic bursting dynamics and coexisting multistable firing patterns in 3D autonomous Morris-Lecar model and microcontroller-based validations. Int. J. Bifurcation Chaos. 29(10), 1950134 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Lin, H., Wang, C., Cui, Li., et al.: Brain-like initial-boosted hyperchaos and application in biomedical image encryption. Ind. Inform, IEEE Trans (2020). https://doi.org/10.1109/TII.2022.3155599

    Book  Google Scholar 

  19. Leng, Y., Yu, D., Hu, Y., et al.: Dynamic behaviors of hyperbolic-type memristor-based Hopfield neural network considering synaptic crosstalk. Chaos 30(3), 033108 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Wang, Z., Parastesh, F., Rajagopal, K., et al.: Delay-induced synchronization in two coupled chaotic memristive Hopfield neural networks. Chaos, Solitons Fractals 134, 109702 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Chen, C., Min, F., Zhang, Y., et al.: Memristive electromagnetic induction effects on Hopfield neural network. Nonlinear Dyn. 106, 2559–2576 (2021)

    Google Scholar 

  22. Njitacke, Z., Tsafack, N., Ramakrishnan, B., et al.: Complex dynamics from heterogeneous coupling and electromagnetic effect on two neurons: application in images encryption. Chaos, Solitons Fractals 153, 111577 (2021)

    MathSciNet  Google Scholar 

  23. Pham, V., Jafari, S., Vaidyuanathan, S., et al.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59(3), 358–363 (2016)

    Google Scholar 

  24. Bao, B., Qian, H., Xu, Q., et al.: Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front. Comput. Neurosci. 11, 81 (2017)

    Google Scholar 

  25. Chen, C., Chen, J., Bao, H., et al.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95(4), 3385–3399 (2019)

    MATH  Google Scholar 

  26. Lin, H., Wang, C., Hong, Q., et al.: A multi-stable memristor and its application in a neural network. IEEE Trans. Circuits Syst. II-Express Briefs 67(12), 3472–3476 (2020)

    Google Scholar 

  27. Zhang, S., Zheng, J., Wang, X., et al.: Initial offset boosting coexisting attractors in memristive multi-double-scroll Hopfield neural network. Nonlinear Dyn. 102(4), 2821–2841 (2020)

    Google Scholar 

  28. Xu, X.: Complicated dynamics of a ring neural network with time delays. J. Phys. A-Math. Theor. 41(3), 035102 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Khokhlova, T., Kipnis, M.: The breaking of a delayed ring neural network contributes to stability: the rule and exceptions. Neural Netw. 48, 148–152 (2013)

    MATH  Google Scholar 

  30. Zhao, D., Wang, J.: Exponential stability and spectral analysis of a delayed ring neural network with a small-world connection. Nonlinear Dyn. 68(1), 77–93 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Kaslik, E., Balint, S.: Complex and chaotic dynamics in a discrete-time-delayed Hopfield neural network with ring architecture. Neural Netw. 22(10), 1411–1418 (2009)

    MATH  Google Scholar 

  32. Panayides, A.S., Amini, A., Filipovic, N.D., et al.: AI in medical imaging informatics: current challenges and future directions. IEEE J. Biomed. Health Inform. 24(7), 1837–1857 (2020)

    Google Scholar 

  33. Ravichandran, D., Praveenkumar, P., Rayappan, J.: DNA chaos blend to secure medical privacy. IEEE Trans. Nanobiosci. 16(8), 850–858 (2017)

    Google Scholar 

  34. Dzwonkowski, M., Rykaczewski, R.: Secure quaternion feistel cipher for DICOM images. IEEE Trans. Image Process. 28(1), 371–380 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Ding, Y., Tan, F., Qin, Z., et al.: DeepKeyGen: a deep learning-based stream cipher generator for medical image encryption and decryption. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3062754

    Article  Google Scholar 

  36. Belazi, A., Talha, M., Kharbech, S., et al.: Novel medical image encryption scheme based on chaos and DNA encoding. IEEE Access 7, 36667–36681 (2019)

    Google Scholar 

  37. Sambas, A., Vaidyanathan, S., Tlelo-Cuautle, E., et al.: A 3-D multi-stable system with a peanut-shaped equilibrium curve: Circuit design, FPGA realization, and an application to image encryption. IEEE Access 8, 137116–137132 (2020)

    Google Scholar 

  38. Telem, A., Fotsin, H., Kengne, J.: Image encryption algorithm based on dynamic DNA coding operations and 3D chaotic systems. Multimed. Tools Appl. 80(12), 19011–19041 (2021)

    Google Scholar 

  39. Zhao, C., Ren, H.: Image encryption based on hyper-chaotic multi-attractors. Nonlinear Dyn. 100(1), 679–698 (2020)

    MathSciNet  Google Scholar 

  40. Cao, W., Zhou, Y., Chen, C., et al.: Medical image encryption using edge maps. Signal Process. 132, 96–109 (2017)

    Google Scholar 

  41. Amirtharajan, A.: A robust medical image encryption in dual domain: chaos-DNA-IWT combined approach. Med. Biol. Eng. Comput. 58(7), 1445–1458 (2020)

    Google Scholar 

  42. Sangavi, V., Thangavel, P.: An exotic multi-dimensional conceptualization for medical image encryption exerting Rossler system and Sine map. J. Inf. Secur. Appl. 55, 102626 (2020)

    Google Scholar 

  43. Kamal, S.T., Hosny, K.M., Elgindy, T.M., et al.: A new image encryption algorithm for grey and color medical images. IEEE Access. 9, 37855–37865 (2021)

    Google Scholar 

  44. Njitacke, Z.T., Isaac, S.D., Nestor, T., et al.: Window of multistability and its control in a simple 3D Hopfield neural network: application to biomedical image encryption. Neural Comput. Appl. 33(12), 6733–6752 (2021)

    Google Scholar 

  45. Doubla, I.S., Njitacke, Z.T., Ekonde, S., et al.: Multistability and circuit implementation of tabu learning two-neuron model: application to secure biomedical images in IoMT. Neural Comput. Appl. 33, 14945–14973 (2021)

    Google Scholar 

  46. Lin, H., Wang, C., Deng, Q., et al.: Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn. 106(1), 959–973 (2021)

    Google Scholar 

  47. Pham, V.T., Volos, C., Jafari, S., et al.: Coexistence of hidden chaotic attractors in a novel no-equilibrium system. Nonlinear Dyn. 87(3), 2001–2010 (2017)

    Google Scholar 

  48. Mannan, Z.I., Adhikari, S.P., Kim, H., et al.: Global dynamics of Chua Corsage Memristor circuit family: fixed-point loci, Hopf bifurcation, and coexisting dynamic attractors. Nonlinear Dyn. 99(4), 3169–3196 (2020)

    Google Scholar 

  49. Moon, S., Baik, J.J., Hong, S.H.: Coexisting attractors in a physically extended Lorenz system. Int. J. Bifurcation Chaos. 31(05), 2130016 (2021)

    MathSciNet  MATH  Google Scholar 

  50. Veeman, D., Mehrabbeik, M., Natiq, H., et al.: A new chaotic system with coexisting attractors. Int. J. Bifurcation Chaos. 32(03), 2230007 (2022)

    MathSciNet  Google Scholar 

  51. Rajagopal, K., Karthikeyan, A., Srinivasan, A.: Dynamical analysis and FPGA implementation of a chaotic oscillator with fractional-order memristor components. Nonlinear Dyn. 91(3), 1491–1512 (2018)

    MATH  Google Scholar 

  52. Kengne, Z., Jafari, S., Njitacke, Z.T., et al.: Dynamic analysis and electronic circuit implementation of a novel 3d autonomous system without linear terms. Commun. Nonlinear Sci. Numer. Simul. 52, 62–76 (2017)

    MATH  Google Scholar 

  53. Wang, N., Li, C., Bao, H., et al.: Generating multi-scroll Chua’s attractors via simplified piecewise-linear Chua’s diode. IEEE Trans. Circuits Syst. I-Regul. Pap. 66(12), 4767–4779 (2019)

    Google Scholar 

  54. Lin, H., Wang, C., Yu, F., et al.: An extremely simple multi-wing chaotic system: dynamics analysis, encryption application and hardware implementation. IEEE Trans. Ind. Electron. 68(12), 12708–12719 (2021)

    Google Scholar 

  55. Stankevich, N., Kuznetsov, A., Popova, E., et al.: Chaos and hyperchaos via secondary Neimark-Sacker bifurcation in a model of radiophysical generator. Nonlinear Dyn. 97(4), 2355–2370 (2019)

    MATH  Google Scholar 

  56. Zhang, S., Li, C., Zheng, J., et al.: Generating any number of initial offset-boosted coexisting Chua’s double-scroll attractors via piecewise-nonlinear memristor. IEEE Trans. Ind. Electron. 69(07), 7202–7212 (2021)

    Google Scholar 

  57. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(04), 600–612 (2004)

    Google Scholar 

  58. Wang, F., Wang, R., Iu, H.H.C., et al.: A novel multi-shape chaotic attractor and its FPGA implementation. IEEE Trans. Circuits Syst. II-Express Briefs 66(12), 2062–2066 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Major Research Project of the National Natural Science Foundation of China (91964108), the National Natural Science Foundation of China (61971185, 62101182), The Natural Science Foundation of Hunan Province (2020JJ4218), the China Postdoctoral Science Foundation (2020M682552) and the Scientific Research Project of Hunan Provincial Department of Education (21C0200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Wang, C., Cui, L. et al. Hyperchaotic memristive ring neural network and application in medical image encryption. Nonlinear Dyn 110, 841–855 (2022). https://doi.org/10.1007/s11071-022-07630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07630-0

Keywords

Navigation