Skip to main content
Log in

Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The first good prediction of the multipole soliton solution for the non-integrable equation, i.e., the saturable nonlinear Schrödinger equation under the PT-symmetric potential, is achieved using the physical information neural network. In addition, we construct multipole (tripole to sextupole) soliton families in saturable nonlinear media with fractional diffraction under the PT-symmetric potential, and quadrupole, pentapole and sextupole solitons can coexist for the same parameters. The existence of multipole solitons is modulated by the modulation intensity of the PT-symmetric potential and Lévy index altogether, while the stable domain of multipole solitons is modulated by both the power and Lévy index together. With the increase in the modulation intensity of the PT-symmetric potential and Lévy index, the existence domain of multipole solitons gradually enlarges. When the soliton power is conserved, with the add of the Lévy index, the peak amplitudes at the outermost part of the profiles of real and imaginary parts for the multipole soliton increase, while the peak amplitudes at other positions decrease, and yet the soliton width increases. In addition, the strong saturable nonlinearity not only reduces the stability of tripole solitons but also inhibits the instability of quadrupole and pentapole solitons. However, the saturable nonlinear intensity exists a threshold for the stability modulation of sextupole solitons, beyond which the stability of sextupole solitons is no longer modulated by the saturable nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135 (2000)

    Article  MATH  Google Scholar 

  3. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  4. Longhi, S.: Fractional Schrödinger equation in optics. Opt. Lett. 40, 1117–1120 (2015)

    Article  Google Scholar 

  5. Dong, L., Huang, C.: Vortex solitons in fractional systems with partially parity-time-symmetric azimuthal potentials. Nonlinear Dyn. 98, 1019–1028 (2019)

    Article  Google Scholar 

  6. Zeng, L., Zeng, J.: One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential. Nonlinear Dyn. 98, 985–995 (2019)

    Article  Google Scholar 

  7. Cao, Q.H., Dai, C.Q.: Symmetric and anti-symmetric solitons of the fractional second- and third-order nonlinear schrodinger equation. Chin. Phys. Lett. 38, 090501 (2021)

    Article  Google Scholar 

  8. Li, P., Li, R., Dai, C.: Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction. Opt. Express 29, 3193–3210 (2021)

    Article  Google Scholar 

  9. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

    Article  MathSciNet  Google Scholar 

  12. Mock, A.: Parity-time–symmetry breaking in two-dimensional photonic crystals: square lattice. Phys. Rev. A. 93, 063812 (2016)

    Article  Google Scholar 

  13. Zhang, J., Liu, J., Zhang, H., Gong, Z., Zhang, S., Yan, L.: Topological optomechanical amplifier in synthetic PT-symmetry. Nanophotonics 11, 1149–1158 (2022)

    Article  Google Scholar 

  14. Joglekar, Y.N., Marathe, R., Durganandini, P., Pathak, R.K.: PT spectroscopy of the Rabi problem. Phys. Rev. A 90, 040101 (2014)

    Article  Google Scholar 

  15. Zhu, X., Yang, F., Cao, S., Xie, J., He, Y.: Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices. Opt. Express 28, 1631–1639 (2020)

    Article  Google Scholar 

  16. Huang, C., Lin, Z., Dong, L., Li, C., Gao, P., Su, W.: Fundamental and multipole solitons in amplitude-modulated Fibonacci lattices. Opt. Express 29, 35327–35335 (2021)

    Article  Google Scholar 

  17. Bo, W., Liu, W., Wang, Y.: Symmetric and antisymmetric solitons in the fractional nonlinear Schrödinger equation with saturable nonlinearity and PT-symmetric potential: Stability and dynamics. Optik 255, 168697 (2022)

    Article  Google Scholar 

  18. Li, P., Dai, C., Li, R., Gao, Y.: Symmetric and asymmetric solitons supported by a PT-symmetric potential with saturable nonlinearity: bifurcation, stability and dynamics. Opt. Express 26, 6949–6961 (2018)

    Article  Google Scholar 

  19. Yang, J.: Symmetry breaking of solitons in two-dimensional complex potentials. Phys. Rev. E 91, 023201 (2015)

    Article  MathSciNet  Google Scholar 

  20. Dmitriev, S.V., Sukhorukov, A.A., Kivshar, Y.S.: Binary parity-time-symmetric nonlinear lattices with balanced gain and loss. Opt. Lett. 2010(35), 2976–2978 (2010)

    Article  Google Scholar 

  21. Driben, R., Malomed, B.A.: Stability of solitons in parity-time-symmetric couplers. Opt. Lett. 36, 4323–4325 (2011)

    Article  Google Scholar 

  22. Pannian, J.C., Alberucci, A., Brazhnyi, V.A., Assanto, G.: Nonlocal gap solitons in PT-symmetric periodic potentials with defocusing nonlinearity. Phys. Rev. A 89, 013812 (2014)

    Article  Google Scholar 

  23. Achilleos, V., Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R.: Dark solitons and vortices in PT-symmetric nonlinear media: from spontaneous symmetry breaking to nonlinear PT phase transitions. Phys. Rev. A 86, 013808 (2012)

    Article  Google Scholar 

  24. Zhen, S., Zhang, Y., Chen, Y., Sun, F., Zou, X., Guo, G.: Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun. 9, 1797 (2018)

    Article  Google Scholar 

  25. Su, S., Gou, S., Chew, L., Chang, Y., Yu, I., Kalachev, A.: Setting a disordered password on a photonic memory. Phys. Rev. A 95, 061805 (2017)

    Article  Google Scholar 

  26. Dong, L., Huang, C., Qi, W.: Nonlocal solitons in fractional dimensions. Opt. Lett. 44, 4917–4920 (2019)

    Article  Google Scholar 

  27. Zeng, L., Mihalache, D., Malomed, B.A., Lu, X., Li, J.: Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension. Chaos Solitons & Fract. 144, 110589 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Desyatnikov, A.S., Neshev, D., Ostrovskaya, E.A., Kivshar, Y.S., Krolikowski, W.: Multipole spatial vector solitons. Opt. Lett. 26, 435–437 (2001)

    Article  Google Scholar 

  29. Desyatnikov, A.S., Neshev, D., Ostrovskaya, E.A., Kivshar, Y.S., Mccarthy, G., Krolikowski, W.: Multipole composite spatial solitons: theory and experiment. Opt. Soc. Am. J. B 19, 586–595 (2002)

    Article  MathSciNet  Google Scholar 

  30. Huang, C., Li, C., Dong, L.: Stabilization of multipole-mode solitons in mixed linear-nonlinear lattices with a PT symmetry. Opt. Express 21, 3917–3125 (2013)

    Article  Google Scholar 

  31. Porras, M.A., Ruiz-Jimenez, C., Carvalho, M.: Stationary and stable light-beam propagation in Kerr media with nonlinear absorption with controllable dissipation patterns. Phys. Rev. A 95, 043816 (2017)

    Article  Google Scholar 

  32. Wen, X., Wu, G., Liu, W., Dai, C.: Dynamics of diverse data-driven solitons for the three-component coupled nonlinear Schrödinger model by the MPS-PINN method. Nonlinear Dyn. 109, 3041–3050 (2022)

    Article  Google Scholar 

  33. Fang, Y., Wu, G., Wen, X., Wang, Y., Dai, C.: Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Tech. 155, 108428 (2022)

    Article  Google Scholar 

  34. Fang, Y., Wu, G., Kudryashov, N.A., Wang, Y., Dai, C.: Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method. Chaos Solitons Fract. 158, 112118 (2022)

    Article  MathSciNet  Google Scholar 

  35. Li, P., Mihalache, D., Malomed, B.A.: Optical solitons in media with focusing and defocusing saturable nonlinearity and a parity-time-symmetric external potential. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 376, 2124 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Zhong, M., Chen, Y., Yan, Z., Tian, S.: Formation, stability, and adiabatic excitation of peakons and double-hump solitons in parity-time-symmetric Dirac-delta(x)-Scarf-II optical potentials. Phys. Rev. E 105, 014204 (2022)

    Article  Google Scholar 

  37. Yaroslav, V.K., Boris, A.M., Lluis, T.: Solitons in nonlinear lattices. Rev. of Modern Phys. 83, 247–306 (2011)

    Article  Google Scholar 

  38. Zezyulin, D.A., Konotop, V.V.: Nonlinear modes in the harmonic PT-symmetric potential. Phys. Rev. A 85, 043840 (2012)

    Article  Google Scholar 

  39. Jisha, C.P., Devassy, L., Alberucci, A., Kuriakose, V.C.: Influence of the imaginary component of the photonic potential on the properties of solitons in PT-symmetric systems. Phys. Rev. A 90, 043855 (2014)

    Article  Google Scholar 

Download references

Funding

Zhejiang Provincial Natural Science Foundation of China (Grant No. LR20A050001); National Natural Science Foundation of China (Grant Nos. 12075210 and 11874324); the Scientific Research and Developed Fund of Zhejiang A&F University (Grant No. 2021FR0009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue-Yue Wang or Chao-Qing Dai.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical standards

This research does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, WB., Wang, RR., Fang, Y. et al. Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn 111, 1577–1588 (2023). https://doi.org/10.1007/s11071-022-07884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07884-8

Keywords

Navigation