Skip to main content
Log in

A new (n+1)-dimensional generalized Kadomtsev–Petviashvili equation: integrability characteristics and localized solutions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Searching for higher-dimensional integrable models is one of the most significant and challenging issues in nonlinear mathematical physics. This paper aims to extend the classic lower-dimensional integrable models to arbitrary spatial dimension. We investigate the celebrated Kadomtsev–Petviashvili (KP) equation and propose its (n+1)-dimensional integrable extension. Based on the singularity manifold analysis and binary Bell polynomial method, it is found that the (n+1)-dimensional generalized KP equation has N-soliton solutions, and it also possesses the Painlevé property, Lax pair, Bäcklund transformation as well as infinite conservation laws, and thus the (n+1)-dimensional generalized KP equation is proven to be completely integrable. Moreover, various types of localized solutions can be constructed starting from the N-soliton solutions. The abundant interactions including overtaking solitons, head-on solitons, one-order lump, two-order lump, breather, breather-soliton mixed solutions are analyzed by some graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Our manuscript has no associated data.

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Rogers, C., Shadwick, W.F.: Bäcklund Transformations and Their Applications. Academic Press, New York (1982)

    MATH  Google Scholar 

  3. Lambert, F., Loris, I., Springael, J.: Classical Darboux transformations and the KP hierarchy. Inverse Probl. 17, 1067–1074 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sakovich, S.Y., Tsuchida, T.: Symmetrically coupled higher-order nonlinear Schrödinger equations: singularity analysis and integrability. J. Phys. A Math. Gen. 33, 7217–7226 (2000)

    Article  MATH  Google Scholar 

  7. Wang, X.B., Tian, S.F.: Exotic vector freak waves in the nonlocal nonlinear Schrödinger equation. Phys. D 442, 133528 (2022)

    Article  MATH  Google Scholar 

  8. Infeld, E., Rowlands, S., Senatorski, A.: Instabilities and oscillations in one and two dimensional Kadomtsev-Petviashvili waves and solitons. Proc. R. Soc. Lond. A 455, 4363–4381 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wazwaz, A.M.: Kadomtsev-Petviashvili hierarchy: N-soliton solutions and distinct dispersion. Appl. Math. Lett. 52, 74–79 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, Z., Li, B., Wazwaz, A.M., Guo, Q.: Lump molecules in fluid systems: Kadomtsev-Petviashvili I case. Phys. Lett. A 424, 127848 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yao, R.X., Li, Y., Lou, S.Y.: A new set and new relations of multiple soliton solutions of (2+1)-dimensional Sawada-Kotera equation. Commun. Nonlinear Sci. Numer. Simul. 99, 105820 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xia, Y.R., Yao, R.X., Xin, X.P., Li, Y.: Trajectory equation of a lump before and after collision with other waves for (2+1)-dimensional Sawada-Kotera equation. Appl. Math. Lett. 135, 108408 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu, G.Q.: Painlevé classification of a generalized coupled Hirota system. Phys. Rev. E 74, 027602 (2006)

    Article  MathSciNet  Google Scholar 

  14. Yang, Y.L., Fan, E.G.: On the long-time asymptotics of the modified Camassa-Holm equation in space-time solitonic regions. Adv. Math. 402, 108340 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu, G.Q., Li, Z.B.: Symbolic computation of the Painlevé test for nonlinear partial differential equations using Maple. Comput. Phys. Commun. 161, 65–75 (2004)

    Article  MATH  Google Scholar 

  16. Xu, G.Q., Deng, S.F.: Painlevé analysis, integrability and exact solutions for a (2+1)-dimensional generalized Nizhnik-Novikov-Veselov equation. Eur. Phys. J. Plus 131, 385 (2016)

    Article  Google Scholar 

  17. Xu, G.Q., Wazwaz, A.M.: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion. Nonlinear Dyn. 101, 581–595 (2020)

    Article  Google Scholar 

  18. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Article  Google Scholar 

  19. Malomed, B.A.: Multidimensional disspersive solitons and solitary vortices. Chaos Solitons Fractals 163, 112526 (2022)

    Article  MATH  Google Scholar 

  20. Fokas, A.S.: Integrable nonlinear evolution partial differential equations in 4+2 and 3+1 dimensions. Phys. Rev. Lett. 96, 190201 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, G.Q., Wazwaz, A.M.: Integrability aspects and localized wave solutions for a new (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Nonlinear Dyn. 98, 1379–1390 (2019)

    Article  Google Scholar 

  22. Cui, W.Y., Li, W., Liu, Y.P.: Multiwave interaction solutions for a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 101, 1119–1129 (2020)

    Article  Google Scholar 

  23. Cheng, C.D., Tian, B., Zhang, C.R., Zhao, X.: Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg-de Vries equation in a fluid. Nonlinear Dyn. 105, 2525–2538 (2021)

    Article  Google Scholar 

  24. Xu, G.Q., Liu, Y.P., Cui, W.Y.: Painlevé analysis, integrability property and multiwave interaction solutions for a new (4+1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation. Appl. Math. Lett. 132, 108184 (2022)

    Article  MATH  Google Scholar 

  25. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)

    MATH  Google Scholar 

  26. Dorizzi, B., Grammaticos, B., Ramani, A., et al.: Are all the equations of the KP hierarchy integrable? J. Math. Phys. 27, 2848–2851 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wazwaz, A.M., Xu, G.Q.: Kadomtsev-Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100, 3711–3716 (2020)

    Article  Google Scholar 

  28. Tian, B., Gao, Y.T.: Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A 340, 243–250 (2005)

    Article  MATH  Google Scholar 

  29. Zhang, X.E., Chen, Y., Tang, X.Y.: Rogue wave and a pair of resonance stripe solitons to KP equation. Comput. Math. Appl. 76, 1938–1949 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guo, L.J., Chabchoub, A., He, J.S.: Higher-order rogue wave solutions to the Kadomtsev-Petviashvili 1 equation. Phys. D 426, 132990 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhao, Z.L., He, L.C.: A new type of multiple-lump and interaction solution of the Kadomtsev-Petviashvili I equation. Nonlinear Dyn. 109, 1033–1046 (2022)

    Article  Google Scholar 

  32. Rao, J.G., He, J.S., Malomed, B.A.: Resonant collisions between lumps and periodic solitons in the Kadomtsev-Petviashvili I equation. J. Math. Phys. 63, 013510 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Alagesan, T., Uthayakumar, A., Porsezian, K.: Painlevé analysis and Bäcklund transformation for a three-dimensional Kadomtsev-Petviashvili equation. Chaos Solitons Fractals 8, 893–898 (1996)

    Article  MATH  Google Scholar 

  34. Xu, G.Q.: The soliton solutions, dromions of the Kadomtsev-Petviashvili and Jimbo-Miwa equations in (3+1)-dimensions. Chaos Solitons Fractals 30, 71–76 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Su, C.Q., Gao, Y.T., Yang, J.W., Gao, Z.: Nonautonomous solitons and Wronskian solutions for the (3+1)-dimensional variable-coefficient forced Kadomtsev-Petviashvili equation in the fluid or plasma. Appl. Math. Lett. 61, 42–48 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kumar, S., Kumar, D., Wazwaz, A.M.: Group invariant solutions of (3+1)-dimensional generalized B-type Kadomstsev-Petviashvili equation using optimal system of Lie subalgebra. Phys. Scr. 94, 065204 (2019)

    Article  Google Scholar 

  37. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: A new (3+1)-dimensional Kadomtsev-Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves. Math. Comput. Simul. 187, 505–519 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Qin, Y.X., Liu, Y.P.: Multiwave interaction solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation. Chin. J. Phys. 71, 561–573 (2021)

    Article  MathSciNet  Google Scholar 

  39. Zhu, W.H., Liu, F.Y., Liu, J.G.: Nonlinear dynamics for different nonautonomous wave structures solutions of a (4+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics. Nonlinear Dyn. 108, 4171–4180 (2022)

    Article  Google Scholar 

  40. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3+1)- and (2+1)-dimensional Kadomtsev-Petviashvili equations. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-08074-2

    Article  Google Scholar 

  41. Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264, 2633–2659 (2018)

  42. Cheng, L., Zhang, Y., Ma, W.X., Ge, J.Y.: Multi-lump or lump-type solutions to the generalized KP equations in (N+1)-dimensions. Eur. Phys. J. Plus 135, 379 (2020)

    Article  Google Scholar 

  43. Lambert, F., Loris, I., Springael, J.: Classical Darboux transformations and the KP hierarchy. Inverse Probl. 17, 1067–1074 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Fan, E.G.: The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials. Phys. Lett. A 375, 493–497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tian, S.F., Zhang, H.Q.: On the integrability of a generalized variable-coefficient forced Korteweg-de Vries equation in fluids. Stud. Appl. Math. 132, 212–246 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Miao, Q., Wang, Y.H., Chen, Y., Yang, Y.Q.: PDEBellII: a Maple package for finding bilinear forms, bilinear Backlund transformations, Lax pairs and conservation laws of the KdV-type equations. Comput. Phys. Commun. 185, 357 (2014)

    Article  MATH  Google Scholar 

  47. Xu, G.Q., Wazwaz, A.M.: Characteristics of integrability, bidirectional solitons and localized solutions for a (3+1)-dimensional generalized breaking soliton equation. Nonlinear Dyn. 96, 1989–2000 (2019)

    Article  MATH  Google Scholar 

  48. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fractals 154 (2022)

Download references

Acknowledgements

The authors would like to sincerely and deeply thank the editor and the anonymous referees for their helpful comments and concrete constructive suggestions, which led to an improved version of this paper.

Funding

This work is supported by the National Natural Science Foundation of China (No. 11871328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Qiong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, GQ., Wazwaz, AM. A new (n+1)-dimensional generalized Kadomtsev–Petviashvili equation: integrability characteristics and localized solutions. Nonlinear Dyn 111, 9495–9507 (2023). https://doi.org/10.1007/s11071-023-08343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08343-8

Keywords

Navigation