Skip to main content
Log in

Inversion of convection–diffusion equation with discrete sources

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We present a convection–diffusion inverse problem that aims to identify an unknown number of sources and their locations. We model the sources using a binary function, and we show that the inverse problem can be formulated as a large-scale mixed-integer nonlinear optimization problem. We show empirically that current state-of-the-art mixed-integer solvers cannot solve this problem and that applying simple rounding heuristics to solutions of the relaxed problem can fail to identify the correct number and location of the sources. We develop two new rounding heuristics that exploit the value and a physical interpretation of the continuous relaxation solution, and we apply a steepest-descent improvement heuristic to obtain satisfactory solutions to both two- and three-dimensional inverse problems. We also provide the code used in our numerical experiments in open-source format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abhishek K, Leyffer S, Linderoth JT (2010) FilMINT: an outer-approximation-based solver for nonlinear mixed integer programs. INFORMS J Comput 22:555–567. https://doi.org/10.1287/ijoc.1090.0373

    Article  MathSciNet  MATH  Google Scholar 

  • Achterberg T (2005) SCIP—a framework to integrate constraint and mixed integer programming. Technical Report ZIB-Report 04-19, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustr. 7, Berlin

  • Achterberg T (2009) Scip: solving constraint integer programs. Math Program Comput 1(1):1–41

    MathSciNet  MATH  Google Scholar 

  • Akcelik V, Biros G, Draganescu A, Ghattas O, Hill J, van Bloemen Waanders B (2005) Dynamic data-driven inversion for terascale simulations: Real-time identification of airborne contaminants. In: Proceedings of SC2005, Seattle, WA

  • Akçelik V, Biros G, Ghattas O, Hill J, Keyes D, van Bloemen Waanders B (2006) Parallel algorithms for PDE-constrained optimization. In: Parallel processing for scientific computing. SIAM, pp 291–322

  • Akrotirianakis I, Maros I, Rustem B (2001) An outer approximation based branch-and-cut algorithm for convex 0–1 MINLP problems. Optim Methods Softw 16:21–47

    MathSciNet  MATH  Google Scholar 

  • Ascher UM, Haber E (2001) Grid refinement and scaling for distributed parameter estimation problems. Inverse Prob 17:571–590

    MathSciNet  MATH  Google Scholar 

  • Balas E (1975) Facets of the knapsack polytope. Math Program 8:146–164

    MathSciNet  MATH  Google Scholar 

  • Bangerth W, Klie H, Matossian V, Parashar M, Wheeler MF (2005) An autonomic reservoir framework for the stochastic optimization of well placement. Cluster Comput 8(4):255–269

    Google Scholar 

  • Bangerth W, Klie H, Wheeler M, Stoffa P, Sen M (2006) On optimization algorithms for the reservoir oil well placement problem. Comput Geosci 10(3):303–319. https://doi.org/10.1007/s10596-006-9025-7

    Article  MATH  Google Scholar 

  • Bartlett R, Heinkenschloss M, Ridzal D, van Bloemen Waanders B (2005) Domain decomposition methods for advection dominated linear-quadratic elliptic optimal control problems. Comput Methods Appl Mech Eng 195(44–47):6428–6447

    MathSciNet  MATH  Google Scholar 

  • Bellout MC, Ciaurri DE, Durlofsky LJ, Foss B, Kleppe J (2012) Joint optimization of oil well placement and controls. Comput Geosci 16(4):1061–1079

    Google Scholar 

  • Belotti P, Kirches C, Leyffer S, Linderoth J, Luedtke J, Mahajan A (2013) Mixed-integer nonlinear optimization. Acta Numerica 22:1–131. https://doi.org/10.1017/S0962492913000032

    Article  MathSciNet  MATH  Google Scholar 

  • Belotti P, Kirches C, Leyffer S, Linderoth J, Luedtke J, Mahajan A (2013) Mixed integer nonlinear programming. Acta Numerica 22:1–131

    MathSciNet  MATH  Google Scholar 

  • Bendsøe M, Sigmund O (2004) Topological optimization theory. Springer, Berlin

    MATH  Google Scholar 

  • Bezanson J, Karpinski S, Shah VB, Edelman A (2012) Julia: a fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145

  • Biegler L, Ghattas O, Heinkenschloss M, van Bloemen Waanders B (eds) (2001) Large-scale PDE-constrained optimization, vol 30. Lecture notes in computational science and engineering. Springer, Berlin

    Google Scholar 

  • Biegler L, Ghattas O, Heinkenschloss M, Keyes D, van Bloemen Waanders B (eds) (2007) Real-time PDE-constrained optimization. SIAM, Philadelphia

    MATH  Google Scholar 

  • Biegler LT, Ghattas O, Heinkenschloss M, van Bloemen Waanders B (2003) Large-scale PDE-constrained optimization: an introduction. Large-scale PDE-constrained optimization. Springer, Berlin, pp 3–13

    MATH  Google Scholar 

  • Biros G, Ghattas O (2005) Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-constrained optimization. Part I: The Krylov-Schur Solver. SIAM J Sci Comput 27(2):687–713

    MathSciNet  MATH  Google Scholar 

  • Biros G, Ghattas O (2005) Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization, Part II: The Lagrange-Newton Solver, and its Application to Optimal Control of Steady Viscous Flows. SIAM J Sci Comput 27(2):714–739

    MathSciNet  MATH  Google Scholar 

  • Bonami P, Biegler L, Conn A, Cornuéjols G, Grossmann I, Laird C, Lee J, Lodi A, Margot F, Sawaya N, Wächter A (2008) An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim 5(2):186–204

    MathSciNet  MATH  Google Scholar 

  • Bonami P, Cornuéjols G, Lodi A, Margot F (2009) A feasibility pump for mixed integer nonlinear programs. Math Program 119:331–352

    MathSciNet  MATH  Google Scholar 

  • Bonami P, Lee J (2007) Bonmin user’s manual. Numer Math 4:1–32

    Google Scholar 

  • Borzi A (2007) High-order discretization and multigrid solution of elliptic nonlinear constrained optimal control problems. J Comp Appl Math 200:67–85

    MathSciNet  MATH  Google Scholar 

  • Borzì A, Schulz V (2009) Multigrid methods for PDE optimization. SIAM Rev 51(2):361–395. https://doi.org/10.1137/060671590

    Article  MathSciNet  MATH  Google Scholar 

  • Burer S, Letchford A (2012) Non-convex mixed-integer nonlinear programming: a survey. Surv Oper Res Manag Sci 17:97–106

    MathSciNet  Google Scholar 

  • Bürger A, Zeile C, Hahn M, Altmann-Dieses A, Sager S, Diehl M (2020) pycombina: an open-source tool for solving combinatorial approximation problems arising in mixed-integer optimal control. In: IFAC World Congress 2020. Accepted

  • Bussieck MR, Pruessner A (2003) Mixed-integer nonlinear programming. SIAG/OPT Views-and-News 14(1):19–22

    Google Scholar 

  • Çezik MT, Iyengar G (2005) Cuts for mixed 0–1 conic programming. Math Program 104:179–202

    MathSciNet  MATH  Google Scholar 

  • Chan TF, Shen J (2005) Image Processing and Analysis. Society for Industrial and Applied Mathematics. http://bookstore.siam.org/ot94/

  • Committee T (2010) Advanced fueld pellet materials and fuel rod design for water cooled reactors. Technical report, International Atomic Energy Agency

  • Conn AR, Gould NI, Toint PL (2000) Trust region methods, vol 1. SIAM, Philadelphia

    MATH  Google Scholar 

  • Costa MFP, Rocha AMA, Francisco RB, Fernandes EM (2016) Firefly penalty-based algorithm for bound constrained mixed-integer nonlinear programming. Optimization 65(5):1085–1104

    MathSciNet  MATH  Google Scholar 

  • Csurka G, Larlus D, Perronnin F, Meylan F (2013) What is a good evaluation measure for semantic segmentation? In: BMVC, vol 27. Citeseer

  • Dakin RJ (1965) A tree search algorithm for mixed programming problems. Comput J 8:250–255

    MathSciNet  MATH  Google Scholar 

  • Danna E, Rothberg E, LePape C (2005) Exploring relaxation induced neighborhoods to improve MIP solutions. Math Program 102:71–90

    MathSciNet  MATH  Google Scholar 

  • De Wolf D, Smeers Y (2000) The gas transmission problem solved by an extension of the simplex algorithm. Manage Sci 46:1454–1465

    MATH  Google Scholar 

  • Donovan G, Rideout D (2003) An integer programming model to optimize resource allocation for wildfire containment. Forest Sci 61(2):331–335

    Google Scholar 

  • Drewes S (2009) Mixed integer second order cone programming. Ph.D. thesis, Technische Universität Darmstadt

  • Drewes S, Ulbrich S (2012) Subgradient based outer approximation for mixed integer second order cone programming. In: Mixed integer nonlinear programming, The IMA volumes in mathematics and its applications, vol 154. Springer, New York, pp 41–59. ISBN 978-1-4614-1926-6

  • Dunning I, Huchette J, Lubin M (2017) Jump: a modeling language for mathematical optimization. SIAM Rev 59(2):295–320

    MathSciNet  MATH  Google Scholar 

  • Duran MA, Grossmann I (1986) An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program 36:307–339

    MathSciNet  MATH  Google Scholar 

  • Ehrhardt K, Steinbach MC (2005) Nonlinear optimization in gas networks. Springer, Berlin

    MATH  Google Scholar 

  • Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems, mathematics and its applications, vol 375. Kluwer Academic Publishers Group, Dordrecht. https://doi.org/10.1007/978-94-009-1740-8

  • Fipki S, Celi A (2008) The use of multilateral well designs for improved recovery in heavy oil reservoirs. In: IADV/SPE Conference and Exhibition. SPE, Orlanda, Florida

  • Fischetti M, Glover F, Lodi A (2005) The feasibility pump. Math Program 104:91–104

    MathSciNet  MATH  Google Scholar 

  • Fischetti M, Lodi A (2002) Local branching. Math Program 98:23–47

    MathSciNet  MATH  Google Scholar 

  • Floudas CA (2000) Deterministic global optimization: theory, algorithms and applications. Kluwer Academic Publishers, Berlin

    Google Scholar 

  • Fourer R, Gay DM, Kernighan BW (1993) AMPL: a modeling language for mathematical programming. The Scientific Press, Beijing

    MATH  Google Scholar 

  • Frangioni A, Gentile C (2006) Perspective cuts for a class of convex 0–1 mixed integer programs. Math Program 106:225–236

    MathSciNet  MATH  Google Scholar 

  • Fügenschuh A, Geißler B, Martin A, Morsi A (2009) The transport PDE and mixed-integer linear programming. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik

  • Garmatter D, Porcelli M, Rinaldi F, Stoll M (2019) Improved penalty algorithm for mixed integer PDE constrained optimization (MIPDECO) problems. arXiv preprint arXiv:1907.06462

  • Geoffrion AM (1972) Generalized Benders decomposition. J Optim Theory Appl 10(4):237–260

    MathSciNet  MATH  Google Scholar 

  • Gerdts M, Sager S (2012) Mixed-integer DAE optimal control problems: necessary conditions and bounds. In: Biegler L, Campbell S, Mehrmann V (eds) Control and optimization with differential-algebraic constraints. SIAM, Berlin, pp 189–212

    MATH  Google Scholar 

  • Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2):215–223. https://doi.org/10.1080/00401706.1979.10489751

    Article  MathSciNet  MATH  Google Scholar 

  • Grossmann IE (2002) Review of nonlinear mixed-integer and disjunctive programming techniques. Optim Eng 3:227–252

    MathSciNet  MATH  Google Scholar 

  • Grossmann IE, Kravanja Z (1997) Mixed-integer nonlinear programming: a survey of algorithms and applications. In: Biegler ACLT, Coleman TF, Santosa F (eds) Large-scale optimization with applications, Part II: optimal design and control. Springer, New York

    Google Scholar 

  • Gugat M, Leugering G, Martin A, Schmidt M, Sirvent M, Wintergerst D (2018) MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems. Comput Optim Appl 70(1):267–294

    MathSciNet  MATH  Google Scholar 

  • Günlük O, Linderoth J (2008) Perspective relaxation of mixed integer nonlinear programs with indicator variables. In: Lodi A, Panconesi A, Rinaldi G (eds.) IPCO 2008: The thirteenth conference on integer programming and combinatorial optimization, vol 5035, pp. 1–16

  • Gunzburger MD (2003) Perspectives in flow control and optimization, advances in design and control, vol 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

  • Guo Jy Lu, Wx Yang Qc, Ts Miao (2019) The application of 0–1 mixed integer nonlinear programming optimization model based on a surrogate model to identify the groundwater pollution source. J Contam Hydrol 220:18–25

    Google Scholar 

  • Gupta OK, Ravindran A (1985) Branch and bound experiments in convex nonlinear integer programming. Manage Sci 31:1533–1546

    MathSciNet  MATH  Google Scholar 

  • Haber E, Ascher UM (2001) Preconditioned all-at-once methods for large, sparse parameter estimation problems. Inverse Prob 17:1847–1864

    MathSciNet  MATH  Google Scholar 

  • Haber E, Oldenburg D (2000) A GCV based method for nonlinear ill-posed problems. Comput Geosci 4:41–63. https://doi.org/10.1023/A:1011599530422

    Article  MathSciNet  MATH  Google Scholar 

  • Hahn M, Leyffer S, Zavala VM (2017) Mixed-Integer PDE-Constrained Optimal Control of Gas Networks. Technical Report Preprint ANL/MCS-P7095-0817, Mathematics and Computer Science Division, Argonne National Laboratory

  • Hahn M, Sager S, Leyffer S (2020) Binary optimal control by trust-region steepest descent. http://www.optimization-online.org/DB_FILE/2020/01/7589.pdf. Submitted for publication

  • Hansen PC (1998) Rank-deficient and discrete ill-posed problems. SIAM monographs on mathematical modeling and computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. https://doi.org/10.1137/1.9780898719697

  • Hante FM (2017) Relaxation methods for hyperbolic PDE mixed-integer optimal control problems. Opt Control Appl Methods 38(6):1103–1110

    MathSciNet  MATH  Google Scholar 

  • Hante FM, Sager S (2013) Relaxation methods for mixed-integer optimal control of partial differential equations. Comput Optim Appl 55(1):197–225

    MathSciNet  MATH  Google Scholar 

  • Hazra SB, Schulz V (2006) Simultaneous pseudo-timestepping for aerodynamic shape optimization problems with state constraints. SIAM J Sci Comput 28:1078–1099

    MathSciNet  MATH  Google Scholar 

  • Heinkenschloss M, Ridzal D (2008) Lecture notes in computational science and engineering, chapter. Integration of sequential quadratic programming and domain decomposition methods for nonlinear optimal control problems. Springer, Berlin

  • Herrmann M, Herzog R, Schmidt S, Vidal-Núñez J, Wachsmuth G (2018) Discrete total variation with finite elements and applications to imaging. arXiv.org

  • Hintermuller M, Vicente LN (2005) Space mapping for optimal control of partial differential equations. SIAM J Opt 15:1002–1025

    MathSciNet  MATH  Google Scholar 

  • Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints. Springer, Berlin

    MATH  Google Scholar 

  • Horowitz E, Sahni S (1974) Computing partitions with applications to the knapsack problem. J ACM 21:277–292

    MathSciNet  MATH  Google Scholar 

  • Jeroslow RG (1973) There cannot be any algorithm for integer programming with quadratic constraints. Oper Res 21(1):221–224

    MathSciNet  MATH  Google Scholar 

  • Jung M (2013) Relaxations and approximations for mixed-integer optimal control. Ph.D. thesis, University Heidelberg. http://www.ub.uni-heidelberg.de/archiv/16036

  • Jung M, Reinelt G, Sager S (2015) The Lagrangian relaxation for the combinatorial integral approximation problem. Optim Methods Softw 30(1):54–80

    MathSciNet  MATH  Google Scholar 

  • Kannan R, Monma C (1978) On the computational complexity of integer programming problems. In: Henn R, Korte B, Oettli W (eds.) Optimization and Operations Research. Lecture notes in economics and mathematical systems, vol 157. Springer, Berlin, pp 161–172

  • Laird CD, Biegler LT, van Bloemen Waanders B, Bartlett RA (2005) Time dependent contaminant source determination for municipal water networks using large scale optimization. ASCE J Water Res Mgt Plan pp. 125–134

  • Lee J, Leyffer S (eds) (2011) Mixed integer nonlinear programming, IMA volume in mathematics and its applications. Springer, New York

  • Legg M, Davidson R, Nozick L (2013) Optimization-based regional hurricane mitigation planning. J Infrastruct Syst 19:1–11

    Google Scholar 

  • Leyffer S, Munson T, Wild S, van Bloemen Waanders B, Ridzal D (2013) Mixed-integer PDE-constrained optimization. Position Paper #15 submitted in response to the ExaMath13 Call for Position Papers. https://collab.mcs.anl.gov/download/attachments/7569466/examath13_submission_15.pdf

  • Lucidi S, Rinaldi F (2013) An exact penalty global optimization approach for mixed-integer programming problems. Optim Lett 7(2):297–307

    MathSciNet  MATH  Google Scholar 

  • Mahajan A, Leyffer S, Linderoth J, Luedtke J, Munson T (2011) MINOTAUR: a toolkit for solving mixed-integer nonlinear optimization. wiki-page. http://wiki.mcs.anl.gov/minotaur

  • Mahajan A, Leyffer S, Linderoth J, Luedtke J, Munson T (2017) Minotaur: a mixed-integer nonlinear optimization toolkit. Technical reprt, ANL/MCS-P8010-0817, Argonne National Laboratory

  • Manns P, Kirches C (2018) Multi-dimensional sum-up rounding for elliptic control systems. DFG SPP 1962 Preprint . https://spp1962.wias-berlin.de/preprints/080.pdf. (submitted to SIAM Journal on Numerical Analysis)

  • Manns P, Kirches C (2019) Improved regularity assumptions for partial outer convexification of mixed-integer PDE-constrained optimization problems. ESAIM: control, optimisation and calculus of variations. http://www.optimization-online.org/DB_HTML/2018/04/6585.html. (accepted)

  • Manns P, Kirches C (2019) Multi-dimensional sum-up rounding using Hilbert curve iterates. In: Proceedings in applied mathematics and mechanics. (accepted)

  • Martello S, Pisinger D, Toth P (1999) Dynamic programming and strong bounds for the 0–1 knapsack problem. Manage Sci 45(3):414–424

    MATH  Google Scholar 

  • Martello S, Toth P (1988) A new algorithm for the 0–1 knapsack problem. Manage Sci 34:633–644

    MathSciNet  MATH  Google Scholar 

  • Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. Wiley, Chichester

    MATH  Google Scholar 

  • Martin A, Möller M, Moritz S (2006) Mixed integer models for the stationary case of gas network optimization. Math Program 105:563–582

    MathSciNet  MATH  Google Scholar 

  • Nannicini G, Belotti P, Liberti L (2008) A local branching heuristic for MINLPs. arXiv:0812.2188v1 [math.CO]

  • Nocedal J, Wright S (2000) Numerical optimization. Springer, Berlin

    MATH  Google Scholar 

  • Ozdogan U (2004) Optimization of well placement under time-dependent uncertainty. Master’s thesis, Stanford University

  • Pisinger D (1995) An expanding-core algorithm for the exact 0–1 knapsack problem. Eur J Oper Res 87:175–187

    MATH  Google Scholar 

  • Pisinger D, Toth P (1998) Knapsack problems. In: Du DZ, Pardalos P (eds) Handbook of combinatorial optimization. Kluwer, Berlin, pp 1–89

    Google Scholar 

  • Quesada I, Grossmann IE (1992) An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. Comput Chem Eng 16:937–947

    Google Scholar 

  • Reinke CM, la Mata Luque TMD, Su MF, Sinclair MB, El-Kady I (2011) Group-theory approach to tailored electromagnetic properties of metamaterials: an inverse-problem solution. Phys Rev E 83(6):06660–1–18 3

  • Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60(1–4):259–268. https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  • Ruthotto L, Treister E, Haber E (2017) jinv-a flexible julia package for pde parameter estimation. SIAM J Sci Comput 39(5):S702–S722

    MathSciNet  MATH  Google Scholar 

  • Sager S (2006) Numerical methods for mixed–integer optimal control problems. Ph.D. thesis, Universität Heidelberg. https://mathopt.de/PUBLICATIONS/Sager2005.pdf

  • Sager S (2009) Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control. J Process Control 19(8):1238–1247 https://mathopt.de/PUBLICATIONS/Sager2009b.pdf

  • Sager S, Bock H, Diehl M (2012) The integer approximation error in mixed-integer optimal control. Math Program A 133(1–2):1–23 https://mathopt.de/PUBLICATIONS/Sager2012a.pdf

  • Sager S, Jung M, Kirches C (2011) Combinatorial integral approximation. Math Methods Oper Res 73(3):363–380. https://doi.org/10.1007/s00186-011-0355-4

    Article  MathSciNet  MATH  Google Scholar 

  • Scherzer O, Grasmair M, Grossauer H, Haltmeier M, Lenzen F (2013) Variational methods in imaging. Springer, Berlin

    MATH  Google Scholar 

  • Sharma S (2013) Mixed-integer nonlinear programming heuristics applied to a shale gas production optimization problem. Master’s thesis, Norwegian University of Science and Technology. http://www.diva-portal.org/smash/get/diva2:646797/FULLTEXT01.pdf

  • Sigmund O, Maute K (2013) Topological optimization approaches. Struct Multidiscip Opt 48:1031–1055

    Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055

    MathSciNet  Google Scholar 

  • Simon R (2008) Multigrid solver for saddle point problems in PDE-constrained optimization. Ph.D. thesis, Johannes Kepler Universitat Linz

  • Steinbach MC (2007) On PDE solution in transient optimization of gas networks. J Comput Appl Math 203(2):345–361

    MathSciNet  MATH  Google Scholar 

  • Still C, Westerlund T (2006) Solving convex MINLP optimization problems using a sequential cutting plane algorithm. Comput Optim Appl 34(1):63–83

    MathSciNet  MATH  Google Scholar 

  • Stubbs R, Mehrotra S (1999) A branch-and-cut method for 0–1 mixed convex programming. Math Program 86:515–532

    MathSciNet  MATH  Google Scholar 

  • Tawarmalani M, Sahinidis NV (2002) Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  • Vogel CR (1999) Sparse matrix computations arising in distributed parameter identification. SIAM J Matrix Anal Appl 20:1027–1037

    MathSciNet  MATH  Google Scholar 

  • Vogel CR (2002) Computational methods for inverse problems. Soc Ind Appl Math. doi 10(1137/1):9780898717570

    MathSciNet  Google Scholar 

  • You F, Leyffer S (2010) Oil spill response planning with MINLP. SIAG/OPT Views-and-News 21(2):1–8

    Google Scholar 

  • You F, Leyffer S (2011) Mixed-integer dynamic optimization for oil-spill response planning with integration of a dynamic oil weathering model. AIChe J. https://doi.org/10.1002/aic.12536

    Article  Google Scholar 

  • Yu J, Anitescu M (2019) Multidimensional sum-up rounding for integer programming in optimal experimental design. Mathe. https://doi.org/10.1007/s10107-019-01421-z

    Article  MATH  Google Scholar 

  • Zavala VM (2014) Stochastic optimal control model for natural gas networks. Comput Chem Eng 64:103–113

    Google Scholar 

  • Zhang P, Romero D, Beck J, Amon C (2013) Integration of AI and OR techniques in constraint programming for combinatorial optimization problems, chapter solving wind farm layout optimization with mixed integer programming and constraint programming. Springer, Berlin

    MATH  Google Scholar 

Download references

Acknowledgements

This work was initiated as a part of the SAMSI Program on Optimization 20162017. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Part of this material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357. This work was also supported by the U.S. Department of Energy through grant DE-FG02-05ER25694. Ruthotto’s work was partially supported by the US National Science Foundation award DMS 1522599. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. SAND2019-10626 J. Hahn’s work was supported by the DFG (German Research Foundation) under SPP 1962 and by the German Federal Ministry of Education and Research (BMBF) under P2Chem grant 05M18NMA. We are grateful to Prof. Martin Siebenborn who helped us with the FEM derivation and deriving the weak form of the PDE. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Leyffer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Finite-element discretization of the source inversion problem

Here, we briefly review how we discretize the variational problem (1) on a computational mesh. We employ the first-discretize-then-optimize approach, which is a common strategy in PDE-constrained optimization; see; for example, (Gunzburger 2003, Sec. 2.9).

We begin by discretizing the PDE-constraint in (1) following the usual procedure of finite-element methods. To obtain a weak form of the constraint, we multiply both sides of the PDE constraint in (1) with a test function \(\phi \in H^1(\varOmega ,\mathbb R)\), the Sobolev space of all functions whose first derivative is square integrable over \(\varOmega\), with \(\phi (x) = 0\) for \(x\in \varGamma _D\), \(\frac{\partial \phi (x)}{\partial n} = 0\) for \(x\in \varGamma _N\), and then apply Green’s identity and integration by parts:

$$\begin{aligned} \int _{\varOmega } w \phi dx&= \int _{\varOmega } (- c \varDelta u + v^\top \nabla u) \phi dx \end{aligned}$$
(17)
$$\begin{aligned}&= \int _{\varOmega } c (\nabla u)^\top \nabla \phi + (v^\top \nabla u) \phi dx + \int _{\partial \varOmega } \phi \left( - c \frac{\partial u}{\partial n} \right) ds \end{aligned}$$
(18)
$$\begin{aligned}&= \int _{\varOmega } c (\nabla u)^\top \nabla \phi + (v^\top \nabla u) \phi dx, \end{aligned}$$
(19)

where the last identity is obtained by using the Neumann boundary conditions on \(\varGamma _N\) and the fact that \(\phi (x)=0\) on \(\varGamma _D\). The weak problem then is to find a \(u \in H^1(\varOmega ,\mathbb R)\) that satisfies (19) for all test functions \(\phi \in H^1(\varOmega ,\mathbb R)\).

Next, we discretize the state u and the control w in the weak form of the PDE constraint (19) using compactly supported Ansatz functions on a computational mesh. For ease of presentation we assume that our computational domain \(\varOmega = [0,1]^d\) is divided into \(N^d\) quadrilateral finite elements of edge length \(L=1/N\). We assume a lexicographical ordering of the elements \(\varOmega _1, \ldots , \varOmega _{N^d}\) in the mesh, which in our case consists of pixels and voxels for \(d=2,3\), respectively. We note that extensions to more general domains and anisotropic or unstructured meshes are straightforward. For example, the implementation used in our numerical experiments uses rectangular meshes whose elements have different edge lengths along the coordinate direction. We use the standard bi-/trilinear Ansatz functions \(\phi _1, \phi _2, \ldots ,\phi _{(N+1)^d}\) for \(d=2\) and \(d=3\), respectively, as test functions and to discretize the state variable u:

$$\begin{aligned} u(x) = \sum _{i=1}^{(N+1)^d} \mathbf {u}_i \phi _i(x). \end{aligned}$$
(20)

Because the Ansatz functions form a Lagrange basis (i.e., for the jth node of the mesh we have \(\phi _i(x_j) = \delta _{ij}\)), the elements in \(\mathbf {u}\) correspond to the value of u at the nodes of the mesh. We represent the control variable w as a linear combination of piecewise constant Ansatz functions \(\psi _1, \psi _2, \ldots , \psi _{N^d}\):

$$\begin{aligned} w(x) = \sum _{i=1}^{N^d} \mathbf {w}_i \psi _i(x). \end{aligned}$$
(21)

Similar to above, the Ansatz functions form a Lagrange basis (i.e., \(\psi _i(x)=1\) if \(x\in \varOmega _i\) and \(\psi (x)=0\) else); hence the entries in \(\mathbf {w}\) correspond to the values of w in the pixels/voxels of our mesh.

The finite-dimensional approximations of u and w in (20) and (21) allow us to write the weak form of the PDE-constraint (19) in terms of the coefficient vectors \(\mathbf {u}\) and \(\mathbf {w}\) as

$$\begin{aligned} \mathbf {S}\mathbf {u}= \mathbf {M}\mathbf {w}- \mathbf {r}, \end{aligned}$$
(22)

where \(\mathbf {S}\in \mathbb R^{(N+1)^d \times (N+1)^d}\) is the (nonsingular) stiffness and \(\mathbf {M}\in \mathbb R^{(N+1)^d \times N^d}\) is the (full-rank) mass matrix, respectively. We compute the entries of both matrices, \(\mathbf {M}\) and \(\mathbf {S}\), approximately by applying a 5th-order Gaussian quadrature rule to (19):

$$\begin{aligned} \mathbf {S}_{ij}&\approx \int _{\varOmega } c (\nabla \phi _j)^\top \nabla \phi _i - \phi _j v^\top \nabla \phi _i dx \end{aligned}$$
(23)
$$\begin{aligned} \mathbf {M}_{ij}&\approx \int _{\varOmega } \psi _j \phi _i dx.\end{aligned}$$
(24)
$$\begin{aligned} \mathbf {r}_j&\approx \int _{\varGamma _D} \phi _j g (v^\top n) ds. \end{aligned}$$
(25)

Because of the compact support of the basis functions, the integrands vanish on all but a few elements, which leads to both matrices being sparse.

We now derive our discretization of the total variation regularizer (3). In this work, we use a first-order finite-difference discretization of the regularizer. This choice is motivated by its simplicity and computational efficiency. We refer to the recent work in  Herrmann et al. (2018) for a more extensive discussion and finite-element discretizations of the total variation. Because we assume a quadrilateral mesh, the discrete gradient operators for \(d=2\) and \(d=3\) are

$$\begin{aligned} \mathbf {G}= \left( \begin{array}{r} \mathbf {I}_N \otimes \mathbf {D}\\ \mathbf {D}\otimes \mathbf {I}_N \\ \end{array}\right) \quad \text { and } \quad \mathbf {G}= \left( \begin{array}{r} \mathbf {I}_N \otimes \mathbf {I}_N \otimes \mathbf {D}\\ \mathbf {I}_N \otimes \mathbf {D}\otimes \mathbf {I}_N \\ \mathbf {D}\otimes \mathbf {I}_N \otimes \mathbf {I}_N \\ \end{array}\right) . \end{aligned}$$
(26)

Here, \(\mathbf {I}_N\in \mathbb R^{N\times N}\) is the identity matrix, \(\otimes\) denotes the Kronecker product, and the one-dimensional difference operator is

$$\begin{aligned} \mathbf {D}= \frac{1}{L} \left( \begin{array}{rrrrrr} -1 &{}\quad 0 &{}\quad 0 &{}\quad \cdots &{}\quad \cdots &{}\quad 0 \\ -1 &{}\quad 1 &{}\quad 0 &{}\quad \cdots &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad -1 &{}\quad 1 &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad &{}\quad \ddots &{}\quad \ddots &{}\quad &{}\quad \vdots \\ \vdots &{}\quad &{}\quad &{}\quad \ddots &{}\quad \ddots &{}\quad 0 \\ 0 &{}\quad \cdots &{}\quad \cdots &{}\quad 0&{}\quad -1 &{}\quad 1 \\ 0 &{}\quad \cdots &{}\quad \cdots &{}\quad 0&{}\quad 0 &{}\quad 1 \\ \end{array} \right) \in \mathbb R^{N+1 \times N}. \end{aligned}$$

We note that this discretization involves a grid change (from the N cell-centers to the \(N+1\) nodes). To accommodate for the grid change, the relaxed form includes the average matrix \(\mathbf {A}\)

$$\begin{aligned} \mathbf {A}= \left( \mathbf {I}_N \otimes \mathbf {B}\,|\,\mathbf {B}\otimes \mathbf {I}_N \right) \end{aligned}$$

for \(d=2\) and

$$\begin{aligned} \mathbf {A}= \left( \mathbf {I}_N \otimes \mathbf {I}_N \otimes \mathbf {B}\,|\,\mathbf {I}_N \otimes \mathbf {B}\otimes \mathbf {I}_N\,|\,\mathbf {B}\otimes \mathbf {I}_N \otimes \mathbf {I}_N \right) , \end{aligned}$$

for \(d=3\), respectively, where we use the one-dimensional average matrix

$$\begin{aligned} \mathbf {B}= \frac{1}{2} \left( \begin{array}{rrrrrr} 2 &{}\quad 0 &{}\quad &{}\quad \cdots &{}\quad \cdots &{}\quad 0 \\ 1 &{}\quad 1 &{}\quad 0 &{}\quad \cdots &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad &{}\quad \ddots &{}\quad \ddots &{}\quad &{}\quad \vdots \\ \vdots &{}\quad &{}\quad &{}\quad \ddots &{}\quad \ddots &{}\quad 0 \\ 0 &{}\quad \cdots &{}\quad \cdots &{}\quad 0&{}\quad 1 &{}\quad 1 \\ 0 &{}\quad \cdots &{}\quad \cdots &{}\quad &{}\quad 0 &{}\quad 1 \\ \end{array} \right) \in \mathbb R^{N \times N+1}. \end{aligned}$$

This leads to the discrete regularization function

$$\begin{aligned} R_{\mathrm {iso}}(\mathbf {w}) = L^d \mathbf {e}^\top \sqrt{ \mathbf {A}(\mathbf {G}\mathbf {w})^2 + \kappa }, \end{aligned}$$
(27)

where \(\mathbf {e}\) is a vector of all ones, the factor \(L^d\) represents the volume of the cells, and \(\kappa >0\) is a conditioning parameter (in our experiments, we use \(\kappa =10^{-3}\)). Note that the square and the square root are applied component-wise.

Appendix 2: Finite-difference discretization of the source inversion problem

We discretize both the source, w, and the state, u, in the cell-centered points of our \(N_x \times N_y\) computational mesh:

$$\begin{aligned} \mathbf {W}_{kl} \simeq w\left( k L_x - L_x/2, l L_y - L_y/2\right) , \quad \mathbf {U}_{ij} \simeq u\left( iL_x - L_x/2, jL_y - L_y/2\right) , \end{aligned}$$

where \(L_x=2/N_x\) and \(L_y=1/N_y\) are the discretization steps in the x and y direction, respectively, and \(k=1,\ldots ,N_x, l=1,\ldots ,N_y\), \(i=0,\ldots ,N_x+1, j=0,\ldots ,N_y\). Here, the variables \(\mathbf {U}_{i,0}, \mathbf {U}_{N_x+1,j}, \mathbf {U}_{i,N_y+1}\) approximate the PDE solution at ghost points placed along \(\varGamma _N\), and the variables \(\mathbf {U}_{0,j}\) are the ghost points near \(\varGamma _D\).

Let us further define \(\mathbf {V}\in \mathbb R^{m}\) to obtain the bilinear interpolation from the cell-centered points of the mesh closest to the receiver locations \(r^1, r^2, \ldots , r^m\). Mathematically, for each receiver location \(r^k=(r^k_x, r^k _y), k=1,\ldots , m\), we define variable \(V_k\) as

$$\begin{aligned} V_{k} = \dfrac{1}{L_xL_y} \begin{pmatrix} iL_x+\dfrac{L_x}{2}-r^k _x \\ r^k _x-iL_x+\dfrac{L_x}{2} \end{pmatrix}^T \begin{pmatrix} \mathbf {U}_{i,j} &{} \mathbf {U}_{i,j+1} \\ \mathbf {U}_{i+1,j} &{} \mathbf {U}_{i+1,j+1} \end{pmatrix} \begin{pmatrix} jL_y+\dfrac{L_y}{2}-r^k _y\\ r^k _y-jL_y+\dfrac{L_y}{2} \end{pmatrix}, \end{aligned}$$
(28)

where, \(i = \lfloor \dfrac{r^k_x}{L_x} + 0.5 \rfloor\) and \(j = \lfloor \dfrac{r^k_y}{L_y} + 0.5 \rfloor\), leading to the following mixed-integer quadratic program:

$$\begin{aligned}&\min _{\mathbf {U},\mathbf {W}}\dfrac{1}{2\sigma }\Big (\sum _{k=1}^{m} \Big (\mathbf {V}_{k}-b_k\Big )^2\Big ) \nonumber \\&\quad+ \alpha {L_x L_y} {\sum _{k=2}^{N_x}\sum _{l=2}^{N_y} \sqrt{{\left( \frac{\mathbf {W}_{kl}-\mathbf {W}_{(k-1)l}}{L_x}\right) }^2 + {\left( \frac{\mathbf {W}_{kl}-\mathbf {W}_{k(l-1)}}{L_y}\right) }^2 + \kappa }}, \nonumber \\&\text{ s.t. }&c \frac{4 \mathbf {U}_{ij} - \mathbf {U}_{(i-1)j} - \mathbf {U}_{(i+1)j} - \mathbf {U}_{i(j-1)}-\mathbf {U}_{i(j+1)}}{{L_x}^2 {L_y}^2} \nonumber \\&\quad+ \frac{\mathbf {U}_{ij} - \mathbf {U}_{(i-1)j} }{L_x} =\mathbf {W}_{ij}, \; i=1,\ldots ,N_x, \quad j=1,\ldots ,N_y \nonumber \\&\quad\mathbf {U}_{N_x+1,j}= \mathbf {U}_{N_x,j}, \; \mathbf {U}_{i,0}= \mathbf {U}_{i,1}, \; \mathbf {U}_{i,N_y+1}= \mathbf {U}_{i,N_y}, \mathbf {U}_{0,j}=-\mathbf {U}_{1,j}, \nonumber \\&\quad i=0,\ldots ,N_x,\quad j=0,\ldots ,N_y \nonumber \\&\quad \mathbf {W}\in \{0,1\}^{N_x\times N_y}, \mathbf {U}\in \mathbb R^{(N_x+2)\times (N_y+2)} . \end{aligned}$$
(29)

Here, the fifth row explicitly encodes the Neumann and Dirichlet boundary conditions. As before, we can again eliminate the state variables \(\mathbf {U}\) using the discretized PDE and boundary conditions and the state variables \(\mathbf {V}\) using (28), resulting in a problem that has similar structure to (6). As before, the objective function is second-order cone representable.

Appendix 3: Selection of regularization parameter for the relaxed problem

To find an effective regularization parameter, we consider the continuous relaxation (7) and follow the L-curve procedure; see (Hansen 1998) for details. In the inversions we use coarser meshes with \(256\times 128\) and \(96\times 48\times 48\) cells for the 2D instance and 3D instance, respectively. We consider the datasets generated in the preceding section and perturb the generated data with 10% iid Gaussian white noise.

To compute the L-curve, we solve 30 instances of the continuous relaxation for different values of \(\alpha\) that are logarithmically spaced between 1 and \(10^{-6}\). To accelerate the computation, we initialize the optimization with the solution from the previous \(\alpha\). For each value of \(\alpha\), we use up to 20 Gauss-Newton iterations and approximately compute the search direction using 5 iterations of projected preconditioned CG that use the Hessian of the regularization function as a preconditioner. For each experiment, we store the reconstructed source, the predicted data, the value of the misfit function, and the values of the regularization function (without the factor \(\alpha\)). The L-curve shown in Fig. 9 show the value of the regularizer and the value of the misfit of these optimal solutions. As is common, the axes are scaled logarithmically; and to provide additional insight, we have added visualizations of the reconstructed sources for the largest and smallest value of \(\alpha\) (resulting in overly smoothed and very noisy reconstructions, respectively) as well as solutions that provide a good trade-off. Using this process we select the regularization parameters \(\alpha =8.531 \times 10^{-3}\) for the two-dimensional instance and \(\alpha =5.298\times 10^{-3}\) for the three-dimensional instance, respectively. Computing the L-curves took about 4 and 48 minutes and involved 32,580 and 30,892 PDE solves in 2D and 3D, respectively. The large number of PDE solves underscores the importance of computing a factorization (or a good preconditioner in large-scale problems) apriori.

Fig. 9
figure 9

L-curve plots for the relaxed optimization problem (7) for the two-dimensional instance (left) and three-dimensional instance (right). In both cases, we solve the relaxed problem for 30 \(\alpha\) values logarithmically spaced between 1 and \(10^{-6}\). We plot the value of the regularizer and misfit at the computed solution in a loglog plot. To highlight the impact of \(\alpha\) on the smoothness of the reconstructed images, we provide snapshots of the reconstructed source at the extremal values and one value that provides a good trade-off (values are marked with a circle)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Hahn, M., Leyffer, S. et al. Inversion of convection–diffusion equation with discrete sources. Optim Eng 22, 1419–1457 (2021). https://doi.org/10.1007/s11081-020-09536-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-020-09536-5

Keywords

Mathematics Subject Classification

Navigation