Skip to main content
Log in

A nanomaterial sensor based on tapered photonic crystal nanometer-scale cavity in a microdisk

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we introduce an optical nano-cavity-based sensor comprising tapered air-holes in a circular path with a central radius close to the perimeter of an optical disk resonator. For more confinement and tuning of the whispering gallery modes (WGMs), the air-holes are interconnected by shallow-etched thin slots (SETSs) at a certain radius. In this way, we gained a combination of an optical microcavity disk resonator, a curved row of photonic crystal (PhC), and the SETSs joining the air-holes. The proposed structure benefits from the high-quality (Q) factor WGMs of the disk, the photonic bandgap of PhC, and a nanometer-scale circular slot region for sensing biomaterials. Improved sensitivity, as well as ease of fabrication, can be attained in this combined structure. The high-intensity electromagnetic (EM) fields penetrated in the very small volume nanocavity/slot region provide conditions for the interaction of EM fields with biomaterials in order to enable a lable-free sensing method. The combined slotted-PhC-microdisk resonator structure exhibits sensitivity as high as ~ 99 nm/RIU, and a modal volume as small as ~ 0.055(λ/n)3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armaroli, A., Morand, A., Benech, P., Bellanca, G., Trillo, S.: Comparative analysis of a planar slotted microdisk resonator. J. Lightw. Technol. 27(18), 4009–4016 (2009)

    ADS  Google Scholar 

  • Blair, S., Chen, Y.: Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl. Optics 40(4), 570–582 (2001)

    ADS  Google Scholar 

  • Cicek, K., Eryürek, M., Kiraz, A.: Single-slot hybrid microring resonator hydrogen sensor. J. Opt. Soc. Am. B 34(7), 1465–1470 (2017)

    ADS  Google Scholar 

  • Daraei, A., Daraei, M.E.: Compact nanocavity with elliptical slot inside photonic wire bandgap materials including sidewalls gratings for biosensing. Appl. Phys. A 122(7), 1–6 (2016)

    Google Scholar 

  • Daraei, A., Daraei, M.E.: Thin cylindrical slot in an optical microdisk cavity for sensing biomaterials. Appl. Phys. A 123(4), 216 (2017)

    ADS  Google Scholar 

  • Daraei, A., Tahraoui, A., Sanvitto, D., Timpson, J.A., Fry, P.W., Hopkinson, M., Guimaraes, P.S.S., Vinck, H., Whittaker, D.M., Skolnick, M.S., Fox, A.M.: Control of polarized single quantum dot emission in high-quality-factor microcavity pillars. Appl. Phys. Lett. 88(5), 051113 (2006)

    ADS  Google Scholar 

  • De Vos, K., Bartolozzi, I., Schacht, E., Bienstman, P., Baets, R.: Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt. Express 15(12), 7610–7615 (2007)

    ADS  Google Scholar 

  • Delezoide, C., Ledoux-Rak, I., Nguyen, C.T.: General approach for the sensitivity analysis and optimization of integrated optical evanescent-wave sensors. J. Opt. Soc. Am. B 31(4), 851–859 (2014)

    ADS  Google Scholar 

  • Densmore, A., Xu, D.X., Waldron, P., Janz, S., Cheben, P., Lapointe, J., Delge, A., Lamontagne, B., Schmid, J.H., Post, E.: A silicon-on-insulator photonic wire based evanescent field sensor. IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006)

    ADS  Google Scholar 

  • Eom, S.C., Shin, J.H.: Design and optimization of horizontal slot microdisk sensors. IEEE Photon. Technol. Lett. 25(19), 1859–1862 (2013)

    ADS  Google Scholar 

  • Fan, X.: Advanced Photonic Structures for Biological and Chemical Detection. Springer, New York (2009)

    Google Scholar 

  • Fernández Gavela, A., Grajales García, D., Ramirez, J.C., Lechuga, L.M.: Last advances in silicon-based optical biosensors. Sensors 16(3), 285 (2016)

    Google Scholar 

  • Foreman, M.R., Swaim, J.D., Vollmer, F.: Whispering gallery mode sensors. Adv. Opt. Photonics 7(2), 168–240 (2015)

    ADS  Google Scholar 

  • Gagliardi, G., Loock, H.P.: Cavity-Enhanced Spectroscopy and Sensing, Springer Series in Optical Sciences, vol. 179. Springer, Berlin (2014)

    Google Scholar 

  • Gandolfi, D., Ramiro-Manzano, F., Aparicio Rebollo, F.J., Ghulinyan, M., Pucker, G., Pavesi, L.: Role of edge inclination in an optical microdisk resonator for label-free sensing. Sensors 15(3), 4796–4809 (2015)

    Google Scholar 

  • Grist, S.M., Schmidt, S.A., Flueckiger, J., Donzella, V., Shi, W., Fard, S.T., Kirk, J.T., Ratner, D.M., Cheung, K.C., Chrostowski, L.: Silicon photonic micro-disk resonators for label-free biosensing. Opt. Express 21(7), 7994–8006 (2013)

    ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Biabanifard, M., Vafapour, Z., Nine, M.J., Dinovitser, A., Cordeiro, C.M.B., Ng, B.H., Abbott, D.: Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 158, 559–567 (2020)

    Google Scholar 

  • Jágerská, J., Zhang, H., Diao, Z., Le Thomas, N., Houdré, R.: Refractive index sensing with an air-slot photonic crystal nanocavity. Opt. Lett. 35(15), 2523–2525 (2010)

    ADS  Google Scholar 

  • Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)

    ADS  Google Scholar 

  • Kavokin, A.V., Baumberg, J.J., Malpuech, G., Laussy, F.P.: Microcavities, vol. 16, 2nd edn. Oxford University Press, Oxford (2017)

    Google Scholar 

  • Khanna, V.K.: Nanosensors: Physical, Chemical, and Biological. CRC Press, Boca Raton (2012)

    Google Scholar 

  • Krioukov, E., Klunder, D.J.W., Driessen, A., Greve, J., Otto, C.: Integrated optical microcavities for enhanced evanescent-wave spectroscopy. Opt. Lett. 27(17), 1504–1506 (2002)

    ADS  Google Scholar 

  • Lan, Y., Xu, Y., Jia, Y., Mei, T., Qu, S., Yan, B., Yang, D., Chen, B., Xu, R., Li, Y.: Multipole modes excitation of uncoupled dark plasmons resonators based on frequency selective surface at x-band frequency regime. Sci. Rep. 7(1), 1–11 (2017)

    ADS  Google Scholar 

  • Lee, S., Eom, S.C., Chang, J.S., Huh, C., Sung, G.Y., Shin, J.H.: A silicon nitride microdisk resonator with a 40-nm-thin horizontal air slot. Opt. Express 18(11), 11209–11215 (2010)

    ADS  Google Scholar 

  • Lo, S.M., Hu, S., Gaur, G., Kostoulas, Y., Weiss, S.M., Fauchet, P.M.: Photonic crystal microring resonator for label-free biosensing. Opt. Express 25(6), 7046–7054 (2017)

    ADS  Google Scholar 

  • Lourtioz, J.M., Benisty, H., Berger, V., Gérard, J.M., Maystre, D., Tchelnokov, A.: Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd edn. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  • Luchansky, M.S., Bailey, R.C.: High-Q optical sensors for chemical and biological analysis. Anal. Chem. 84(2), 793–821 (2011)

    Google Scholar 

  • Oxborrow, M.: Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007)

    ADS  Google Scholar 

  • Qi, B., Yu, P., Li, Y., Jiang, X., Yang, M., Yang, J.: Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity. IEEE Photon. Technol. Lett. 23(14), 992–994 (2011)

    ADS  Google Scholar 

  • Rigo, E., Aparicio, F.J., Vanacharla, M.R., Larcheri, S., Guider, R., Han, B., Pucker, G., Pavesi, L.: Evanescent-field excitation and collection approach for waveguide based photonic luminescent biosensors. Appl. Phys. B 114(4), 537–544 (2014)

    ADS  Google Scholar 

  • Srinivasan, K., Borselli, M., Painter, O., Stintz, A., Krishna, S.: Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots. Opt. Express 14(3), 1094–1105 (2006)

    ADS  Google Scholar 

  • Sukhoivanov, I.A., Guryev, I.V.: Photonic Crystals: Physics and Practical Modeling, Springer Series in Optical Sciences, vol. 152. Springer, Berlin (2009)

    Google Scholar 

  • Sun, Y., Fan, X.: Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 399(1), 205–211 (2011)

    Google Scholar 

  • Tang, W.X., Zhang, H.C., Ma, H.F., Jiang, W.X., Cui, T.J.: Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies. Adv. Opt. Mater. 7(1), 1800421 (2019)

    Google Scholar 

  • Vafapour, Z.: Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance. J. Opt. Soc. Am. A 35(3), 417–422 (2018)

    ADS  Google Scholar 

  • Vafapour, Z.: Polarization-independent perfect optical metamaterial absorber as a glucose sensor in Food Industry applications. IEEE Trans. Nanobiosci. 18(4), 622–627 (2019)

    Google Scholar 

  • Vafapour, Z., Ghahraloud, H.: Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial. J. Opt. Soc. Am. B 35(5), 1192–1199 (2018)

    ADS  Google Scholar 

  • Vahala, K.J.: Optical microcavities. Nature 424, 839–846 (2003)

    ADS  Google Scholar 

  • Vaškevičius, K., Gabalis, M., Urbonas, D., Balčytis, A., Petruškevičius, R., Juodkazis, S.: Enhanced sensitivity and measurement range SOI microring resonator with integrated one-dimensional photonic crystal. J. Opt. Soc. Am. B 34(4), 750–755 (2017)

    ADS  Google Scholar 

  • Vollmer, F., Arnold, S.: Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5(7), 591–596 (2008)

    Google Scholar 

  • Vollmer, F., Arnold, S., Keng, D.: Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. USA 105(52), 20701–20704 (2008)

    ADS  Google Scholar 

  • Wang, X., Guan, X., Huang, Q., Zheng, J., Shi, Y., Dai, D.: Suspended ultra-small disk resonator on silicon for optical sensing. Opt. Lett. 38(24), 5405–5408 (2013)

    ADS  Google Scholar 

  • Wangüemert-Pérez, J.G., Cheben, P., Ortega-Moñux, A., Alonso-Ramos, C., Pérez-Galacho, D., Halir, R., Molina-Fernández, I., Xu, D.X., Schmid, J.H.: Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. Opt. Lett. 39(15), 4442–4445 (2014)

    ADS  Google Scholar 

  • Xu, Z., Liu, S., Li, S., Yin, X.: Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states. Phys. Rev. B 99(4), 041104 (2019)

    ADS  Google Scholar 

  • Yablonovitch, E.: Photonic band-gap crystals. J. Phys. Condens. Matter 5(16), 2443–2460 (1993)

    ADS  Google Scholar 

  • Yan, X., Yang, M., Zhang, Z., Liang, L., Wei, D., Wang, M., Zhang, M., Wang, T., Liu, L., Xie, J., Yao, J.: The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron. 126, 485–492 (2019)

    Google Scholar 

  • Yi, C.H., Kullig, J., Kim, C.M., Wiersig, J.: Frequency splittings in deformed optical microdisk cavities. Phys. Rev. A 96(2), 023848 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmadreza Daraei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidi, S.R., Daraei, A. A nanomaterial sensor based on tapered photonic crystal nanometer-scale cavity in a microdisk. Opt Quant Electron 52, 167 (2020). https://doi.org/10.1007/s11082-020-02289-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02289-6

Keywords

Navigation