Skip to main content
Log in

Numerical investigation and circuit analysis of interdigitated photoconductive antenna for terahertz applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

A Commentary to this article was published on 16 March 2024

Abstract

Terahertz generation through photoconductive antenna (PCA) is quite popular mainly due to the advancement of nanotechnology and material research. An extensive investigation of the interdigitated photoconductive antenna (IPCA) in the terahertz (THz) frequency band has been carried out based on numerical modeling. An equivalent circuit model for IPCA based on its electrical perspective with corresponding expressions has been solved to understand the capacitive behavior of the gap between the interdigitated electrodes. This work explores the performance of IPCA with variation in structural parameters of their interdigitated electrode geometry in the active region. The interdigitated elemental periodicity, width and length of the IPCA are varied by keeping the interdigitated gap constant between the elements. The temporal behavior of generated electric field and its corresponding spectral response of the IPCAs with variation in the interdigitated electrode geometry has been compared. Moreover, the coupling behavior of the elements has been observed in the generated radiation. Finally, the results prove that the THz amplitude, frequency and efficiency can be enhanced by optimizing the structural parameters of the interdigitated electrode elements in the active region. This analysis is very useful while doing the practical experiments in spectroscopy, imaging and communication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aditya, R.A.N.S., Thampy, A.S.: Behavioral and modal analysis of graphene-based polygonal optical antenna for enhanced bio-molecular detection. Plasmonics 14(2), 293–302 (2019)

    Article  CAS  Google Scholar 

  • Amlashi, Salman Behboudi, Mohsen Khalily, Tim Brown, Pei Xiao, and Rahim Tafazolli. An Efficient Plasmonic Photoconductive Antenna for Terahertz Continuous-Wave Applications. In: 2021 15th European Conference on Antennas and Propagation (EuCAP), pp. 1–5. IEEE, (2021)

  • Auston, D.H.: Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26(3), 101–103 (1975)

    Article  ADS  CAS  Google Scholar 

  • Bardolaza, H., Afalla, J., De Los, A., Reyes, D.A., Lumantas, J.D., Vasquez, J.M., Mag-usara, V.K., et al.: Efficacy of proposed 2DEG-based photoconductive antenna using magnetic bias-controlled carrier transport. Current Appl. Phys. 19(6), 756–761 (2019)

    Article  ADS  Google Scholar 

  • Bashirpour, M., Ghorbani, S., Kolahdouz, M., Neshat, M., Masnadi-Shirazi, M., Aghababa, H.: Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure. RSC Adv. 7(83), 53010–53017 (2017)

    Article  ADS  CAS  Google Scholar 

  • Bashirpour, M., Forouzmehr, M., Hosseininejad, S.E., Kolahdouz, M., Neshat, M.: Improvement of terahertz photoconductive Antenna using optical Antenna Array of ZnO Nanorods. Sci. Rep. 9(1), 1–8 (2019)

    Article  CAS  Google Scholar 

  • Berry, C.W., Wang, N., Hashemi, M.R., Unlu, M., Jarrahi, M.: Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun. 4, 1622 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Berry, C.W., Hashemi, M.R., Jarrahi, M.: Generation of high-power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas. Appl. Phys. Lett. 104(8), 081122 (2014)

    Article  ADS  Google Scholar 

  • Burford, N.M., El-Shenawee, M.O.: Review of terahertz photoconductive antenna technology. Opt. Eng. 56(1), 010901 (2017)

    Article  ADS  Google Scholar 

  • Castaneda-Uribe, O.A., Criollo, C.A., Winnerl, S., Helm, M., Avila, A.: Comparative study of equivalent circuit models for photoconductive antennas. Opt. Express 26(22), 29017–29031 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Emadi, R., Barani, N., Safian, R., Nezhad, A.Z.: Hybrid computational simulation and study of terahertz pulsed photoconductive antennas. J. Infrared, Milli. Terahertz Waves 37(11), 1069–1085 (2016)

    Article  Google Scholar 

  • Papaioannou, Evangelos Th, Garik Torosyan, Sascha Keller, Laura Scheuer, Marco Battiato, Valynn Katrine Mag-Usara, Johannes L’huillier, Masahiko Tani, and René Beigang. Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths. IEEE Trans. Magnet. 54(11): 1–5 (2018)

  • Fesharaki, F., Jooshesh, A., Bahrami-Yekta, V., Mahtab, M., Tiedje, T., Darcie, T.E., Gordon, R.: Plasmonic antireflection coating for photoconductive terahertz generation. ACS Photonics 4(6), 1350–1354 (2017)

    Article  CAS  Google Scholar 

  • Formanek, F., Brun, M.-A., Umetsu, T., Omori, S., Yasuda, A.: Aspheric silicon lenses for terahertz photoconductive antennas. Appl. Phys. Lett. 94(2), 021113 (2009)

    Article  ADS  Google Scholar 

  • Garufo, A., Carluccio, G., Llombart, N., Neto, A.: Norton equivalent circuit for pulsed photoconductive antennas–Part I: Theoretical model. IEEE Trans. Antennas Propag. 66(4), 1635–1645 (2018)

    Article  ADS  Google Scholar 

  • Gupta, A., Rana, G., Bhattacharya, A., Singh, A., Jain, R., Bapat, R.D., Duttagupta, S.P., Prabhu, S.S.: Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation. APL Photonics 3(5), 051706 (2018)

    Article  ADS  Google Scholar 

  • Han, S.-P., Kim, N., Ko, H., Ryu, H.-C., Park, J.-W., Yoon, Y.-J., Shin, J.-H., et al.: Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection. Opt. Express 20(16), 18432–18439 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hwang, H.Y., Fleischer, S., Brandt, N.C., Perkins Jr, B.G., Liu, M., Fan, K., Sternbach, A., Zhang, X., Averitt, R.D., Nelson, K.A.: A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses. J. Modern Opt. 62(18), 1447–1479 (2015)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Neda Khiabani, Yi Huang, Yao-chun Shen, Stephen Boyes, Theoretical Modeling of a Photoconductive Antenna in a Terahertz Pulsed System. IEEE Trans. Antennas Propagat. 61(4) (2013)

  • Lepeshov, S., Gorodetsky, A., Krasnok, A., Toropov, N., Vartanyan, T.A., Belov, P., Alú, A., Rafailov, E.U.: Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures. Sci. Rep. 8(1), 1–7 (2018)

    Article  CAS  Google Scholar 

  • Mondal, Shyamal, Vaisshale Rathinasamy, Shriya Kapoor, Shouvik Mukherjee, and T. Rama Rao. Interdigitated Photoconductive Antenna Design and Analysis for Terahertz Wireless Applications. In: 2020 IEEE 3rd 5G World Forum (5GWF), pp. 484–487. IEEE, (2020)

  • Nagatsuma, T., Ducournau, G., Renaud, C.C.: Advances in terahertz communications accelerated by photonics. Nat. Photonics 10(6), 371–379 (2016)

    Article  ADS  CAS  Google Scholar 

  • Nakanishi, H., Fujiwara, S., Takayama, K., Kawayama, I., Murakami, H., Tonouchi, M.: Imaging of a polycrystalline silicon solar cell using a laser terahertz emission microscope. Appl. Phys. Exp. 5(11), 112301 (2012)

    Article  ADS  Google Scholar 

  • Nguyen, T.K., Kim, W.T., Kang, B.J., Bark, H.S., Kim, K., Lee, J., Park, I., Jeon, T.-I., Rotermund, F.: Photoconductive dipole antennas for efficient terahertz receiver. Opt. Commun. 383, 50–56 (2017)

    Article  ADS  CAS  Google Scholar 

  • Park, S.-G., Weiner, A.M., Melloch, M.R., Sider, C.W., Sider, J.L., Taylor, A.J.: High-power narrow-band terahertz generation using large-aperture photoconductors. IEEE J. Quantum Electron. 35(8), 1257–1268 (1999)

    Article  ADS  CAS  Google Scholar 

  • Park, S.-G., Choi, Y., Young-Jae, Oh., Jeong, K.-H.: Terahertz photoconductive antenna with metal nanoislands. Opt. Express 20(23), 25530–25535 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Peng, K., Parkinson, P., Boland, J.L., Gao, Q., Wenas, Y.C., Davies, C.L., Li, Z., et al.: Broadband phase-sensitive single InP nanowire photoconductive terahertz detectors. Nano Lett. 16(8), 4925–4931 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Prajapati, J., Bharadwaj, M., Chatterjee, A., Bhattacharjee, R.: Circuit modeling and performance analysis of photoconductive antenna. Opt. Commun. 394, 69–79 (2017)

    Article  ADS  CAS  Google Scholar 

  • Prajapati, Jitendra, Mrinmoy Bharadwaj, Amitabh Chatterjee, and Ratnajit Bhattacharjee. Time dependent capacitance in photoconductive antenna. In: 2015 IEEE Applied Electromagnetics Conference (AEMC), pp. 1–2. IEEE, (2015)

  • Rathinasamy, Vaisshale, Rama Rao Thipparaju, Nisha Flora Boby Edwin, and Shyamal Mondal. Interdigitated photoconductive terahertz antenna for future wireless communications. Microwave Op. Technol. Lett. (2021)

  • Rathinasamy, Vaisshale, Shriya Kapoor, Akhil Rout, T. Rama Rao, and Shyamal Mondal. Interdigitated-Slot Photoconductive Antenna for Terahertz Applications. In: 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), pp. 1–3. IEEE, (2019)

  • Ropagnol, X., Blanchard, F., Ozaki, T., Reid, M.: Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Appl. Phys. Lett. 103(16), 161108 (2013)

    Article  ADS  Google Scholar 

  • Ropagnol, X., M. Bouvier, T. Ozaki, and M. Reid. SiC photoconductive antenna for intense THz generation. In: CLEO: Science and Innovations, pp. JTu4A-106. Optical Society of America, (2014)

  • Schmerler, S., Hahn, T., Hahn, S., Niklas, J.R., Gründig-Wendrock, B.: Explanation of positive and negative PICTS peaks in SI-GaAs. J. Mater. Sci.: Mater. Electron. 19(1), 328–332 (2008)

    Google Scholar 

  • Schoenberg, J.S.H., Burger, J.W., Scott Tyo, J., Abdalla, M.D., Skipper, M.C., Buchwald, W.R.: Ultra-wideband source using gallium arsenide photoconductive semiconductor switches. IEEE Trans. Plasma Sci. 25(2), 327–334 (1997)

    Article  ADS  Google Scholar 

  • Shan, Jie, and Tony F. Heinz. Terahertz radiation from semiconductors. In: Ultrafast Dynamical Processes in Semiconductors, pp. 1–56. Springer, Berlin, Heidelberg (2004)

  • Shi, W., Hou, L., Liu, Z., Tongue, T.: Terahertz generation from SI-GaAs stripline antenna with different structural parameters. JOSA B 26(9), A107–A112 (2009)

    Article  ADS  CAS  Google Scholar 

  • Singh, M., Sharma, R.P.: Generation of THz radiation by laser plasma interaction. Contrib. Plasma Phys. 53(7), 540–548 (2013)

    Article  ADS  CAS  Google Scholar 

  • Tariq, F., Khandaker, M.R.A., Wong, K.-K., Imran, M.A., Bennis, M., Debbah, M.: A speculative study on 6G. IEEE Wireless Commun. 27(4), 118–125 (2020)

    Article  Google Scholar 

  • Xiong, Zhonggang, Zhi-xiang Wu, Quan-chen Liu, Lin-yu Chen, and Jin Guo. The impact of structural parameters of split-ring resonators on the terahertz radiation characteristics of micro-structured photoconductive antennas: A simulation study. IEEE Photonics J. (2020).

  • Yano, R., Gotoh, H., Hirayama, Y., Miyashita, S., Kadoya, Y., Hattori, T.: Terahertz wave detection performance of photoconductive antennas: Role of antenna structure and gate pulse intensity. J. Appl. Phys. 97(10), 103103–103103 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to the executional support from the SRMIST, DRDO and DST, GoI. Dr. Mondal S is very thankful to start-up grant UGC, GoI for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamal Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathinasamy, V., Thipparaju, R.R., Boby, E.N.F. et al. Numerical investigation and circuit analysis of interdigitated photoconductive antenna for terahertz applications. Opt Quant Electron 54, 239 (2022). https://doi.org/10.1007/s11082-022-03619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03619-6

Keywords

Navigation