Skip to main content
Log in

Dispersive optical soliton wave solutions for the time-fractional perturbed nonlinear Schrödinger equation with truncated M-fractional conformable derivative in the nonlinear optical fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, the generalized Kudryashov method is used to investigate the exact solutions of the time-fractional perturbed nonlinear Schrödinger equation with a truncated M- fractional conformable derivative, as well as the Kerr law and power law of nonlinearity. In mathematical physics and engineering, this equation has a wide range of applications. By using the travelling wave transformation with these two nonlinearities, this governing equation has been transformed to a nonlinear ordinary differential equation, and then the very powerful and efficient method viz. the generalized Kudryashov approach has been applied in the resulting equation to obtain optical soliton solutions. These solutions can be useful and desired for illuminating certain nonlinear physical phenomena in truly nonlinear dynamical systems. This study successfully constructs kink singular, singular soliton, bright, dark, and combined dark-bright optical singular soliton solutions.The physical meaning of 2D and 3D geometrical structures for certain derived solutions has been described here by assigning specific values to the undefined parameters, and it demonstrates the physical configurations of the obtained solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akinyemi L., Şenol M., and Osman M.S., 2021,“Analytical and approximate solutions of nonlinear Schrödinger equation with higher dimension in the anomalous dispersion regime”, Journal of Ocean Engineering and Sciencehttps://doi.org/10.1016/j.joes.2021.07.006

  • Akram, G., Sadaf, M., Dawood, M.: Abundant soliton solutions for Radhakrishnan–Kundu–Laksmanan equation with Kerr law non-linearity by improved -expansion technique. Optik 247, 167787 (2021). https://doi.org/10.1016/j.ijleo.2021.167787

    Article  ADS  Google Scholar 

  • Akram G., Sadaf M., and Zainab I., 2022, “The dynamical study of Biswas–Arshed equation via modified auxiliary equation method”, Optik, p.168614. https://doi.org/10.1016/j.ijleo.2022.168614

  • Baskonus, H.M., Osman, M.S., Ramzan, M., Tahir, M., Ashraf, S.: On pulse propagation of soliton wave solutions related to the perturbed Chen–Lee–Liu equation in an optical fiber. Opt. Quant. Electron. 53(10), 1–17 (2021)

    Article  Google Scholar 

  • Das N., Saha Ray S.: Novel optical soliton solutions for time-fractional resonant nonlinear Schrödinger equation in optical fiber. Opt. Quant. Electron. 54(2), 1–23 (2022)

    Article  Google Scholar 

  • Fang, J.J., Dai, C.Q.: Optical solitons of a time-fractional higher-order nonlinear Schrödinger equation. Optik 209, 164574 (2020). https://doi.org/10.1016/j.ijleo.2020.164574

    Article  ADS  Google Scholar 

  • Fibich, G.: The nonlinear Schrödinger equation. Springer, Berlin (2015)

    Book  Google Scholar 

  • Ghanbari, B.: Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative. Mathematical Methods in the Applied Sciences 44(11), 8759–8774 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Ghanbari, B., Inc, M.: A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation. The European Physical Journal plus 133(4), 1–18 (2018)

    Article  Google Scholar 

  • Gonzalez-Gaxiola O., Biswas A., Ekici M., and Khan S., 2021, “Highly dispersive optical solitons with quadratic–cubic law of refractive index by the variational iteration method”, Journal of Optics, pp.1–8.

  • He, C., Korposh, S., Correia, R., Liu, L., Hayes-Gill, B.R., Morgan, S.P.: Optical fibre sensor for simultaneous temperature and relative humidity measurement: Towards absolute humidity evaluation. Sens. Actuators, B Chem. 344, 130154 (2021). https://doi.org/10.1016/j.snb.2021.130154

    Article  Google Scholar 

  • Kaplan, M., Bekir, A., Akbulut, A.: A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics. Nonlinear Dyn. 85(4), 2843–2850 (2016)

    Article  MathSciNet  Google Scholar 

  • Kardashin, A., Pervishko, A., Biamonte, J., Yudin, D.: Numerical hardware-efficient variational quantum simulation of a soliton solution. Phys. Rev. A 104(2), L020402 (2021). https://doi.org/10.1103/PhysRevA.104.L020402

    Article  ADS  Google Scholar 

  • Kevrekidis P.G., 2009, The discrete nonlinear Schrödinger equation: mathematical analysis, numerical computations and physical perspectives (Vol. 232), Springer Science & Business Media.

  • Mainardi, F., Gorenflo, R.: On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118(1–2), 283–299 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Mathanaranjan, T.: Soliton solutions of deformed nonlinear Schrödinger equations using ansatz method. International Journal of Applied and Computational Mathematics 7(4), 1–11 (2021)

    Article  MathSciNet  Google Scholar 

  • Mirzazadeh, M., Akinyemi, L., Şenol, M., Hosseini, K.: A variety of solitons to the sixth-order dispersive (3+1)-dimensional nonlinear time-fractional Schrödinger equation with cubic-quintic-septic nonlinearities. Optik 241, 166318 (2021)

    Article  ADS  Google Scholar 

  • Nisar K.S., Ali K.K., Inc M., Mehanna M.S., Rezazadeh H., and Akinyemi L., 2022,“New solutions for the generalized resonant nonlinear Schrödinger equation”, Results in Physics, .105153. https://doi.org/10.1016/j.rinp.2021.105153.

  • Osman, M.S., Zafar, A., Ali, K.K., Razzaq, W.: Novel optical solitons to the perturbed Gerdjikov-Ivanov equation with truncated M-fractional conformable derivative. Optik 222, 165418 (2020). https://doi.org/10.1016/j.ijleo.2020.165418

    Article  ADS  Google Scholar 

  • Powers, P.E., Haus, J.W.: Fundamentals of nonlinear optics. CRC Press (2017)

    MATH  Google Scholar 

  • Rehman, H.U., Ullah, N., Imran, M.A., Akgül, A.: Optical solitons of two non-linear models in birefringent fibres using extended direct algebraic method. International Journal of Applied and Computational Mathematics 7(6), 1–26 (2021)

    Article  MathSciNet  Google Scholar 

  • Richardson, D.J., Fini, J.M., Nelson, L.E.: Space-division multiplexing in optical fibres. Nat. Photonics 7(5), 354–362 (2013)

    Article  ADS  Google Scholar 

  • Sabatier J.A.T.M.J., Agrawal O.P., and Machado J.T., 2007, Advances in fractional calculus (Vol. 4, No. 9), Dordrecht: Springer.

  • Saha Ray S.: A novel method for new solutions of time fractional (1+2)-dimensional nonlinear Schrödinger equation involving dual-power law nonlinearity. Int. J. Mod. Phys. B 33(24), 1950280 (2019). https://doi.org/10.1142/S0217979219502801

    Article  ADS  MATH  Google Scholar 

  • Saha Ray S., and Das N., 2021, “New optical soliton solutions of fractional perturbed nonlinear Schrödinger equation in nanofibers”, Modern Physics Letters B, p.2150544. https://doi.org/10.1142/S0217984921505448.

  • Saha Ray S.: Fractional calculus with applications for nuclear reactor dynamics. CRC Press (2015)

    MATH  Google Scholar 

  • Vahidi, J., Zabihi, A., Rezazadeh, H., Ansari, R.: New extended direct algebraic method for the resonant nonlinear Schrödinger equation with Kerr law nonlinearity. Optik 227, 165936 (2021). https://doi.org/10.1016/j.ijleo.2020.165936

    Article  ADS  Google Scholar 

  • Wazwaz, A.M., Kaur, L.: Optical solitons and Peregrine solitons for nonlinear Schrödinger equation by variational iteration method. Optik 179, 804–809 (2019)

    Article  ADS  Google Scholar 

  • Zafar, A., Bekir, A., Raheel, M., Rezazadeh, H.: Investigation for optical soliton solutions of two nonlinear Schrödinger equations via two concrete finite series methods. International Journal of Applied and Computational Mathematics 6(3), 1–13 (2020)

    Article  Google Scholar 

  • Zhang, H., Jiang, X., Wang, C., Chen, S.: Crank–Nicolson Fourier spectral methods for the space fractional nonlinear Schrödinger equation and its parameter estimation. Int. J. Comput. Math. 96(2), 238–263 (2019). https://doi.org/10.1016/j.ijleo.2021.166318

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the financial assistance provided by the "Council of Scientific and Industrial Research (CSIR)" fellowship scheme under Grant No. 09/983(0043)/2019-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saha Ray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, N., Saha Ray, S. Dispersive optical soliton wave solutions for the time-fractional perturbed nonlinear Schrödinger equation with truncated M-fractional conformable derivative in the nonlinear optical fibers. Opt Quant Electron 54, 544 (2022). https://doi.org/10.1007/s11082-022-03899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03899-y

Keywords

Navigation