Skip to main content
Log in

A proposal for optomechanical bichromatic wavelength switching for two-color up-conversion application

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This study focuses on the Optomechanical bichromatic wavelength switching system as an indirect two-color up-conversion process that relies on optical force and nanorod scattering effects. This system is used to control light coupling between four parallel optical waveguides made of silicon nitride (Si3N4) which form two identical parts. The parallel waveguides with 0.5 µm × 0.5 µm cross-section and 220 µm lengths are suspended on a silica (SiO2) substrate embedded with the array of square silicon (Si) nanorods. By mid-IR plane wave illumination, as control light, with different intensities and different wavelengths on nanorods, scattering would increase and result in an improvement in attractive gradient optical force exerted on waveguides. Via bending waveguides toward each other, caused by optical gradient force, two different visible lights, as probe signals, propagating in the first waveguide of each section would couple to the adjacent waveguide. Simulation results reveal that when the distance between the parallel waveguides in the equilibrium position is 100 nm and the intensity of mid-IR light is 1.28 mW/µm2 total coupling would occur in two situations: 1- when the control light is 4.5 µm, the probe light with 713 nm wavelength is transmitted to the output, 2- when the control light is 3 µm, the probe light with 609 nm wavelength is transmitted to the output. In the first case 1.92 pN/µm optical force is needed to bend each waveguide by 9 nm and in the second one, 1.28 pN/µm optical force is needed to bend each waveguide by 6 nm for total coupling. The efficiency of the coupled waveguides system is %88.6 for 609 nm probe light injection and %96.5 for 713 nm probe light injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aghadjani, M., Erementchouk, M., Mazumder, P.: Force distribution inside the spoof surface plasmon polariton waveguide. JOSA B 35(5), 1113–1118 (2018)

    Article  ADS  Google Scholar 

  • Ashkin, A., Dziedzic, J.: Optical trapping and manipulation of single living cells using infra-red laser beams. Ber. Bunsenges. Phys. Chem. 93(3), 254–260 (1989)

    Article  Google Scholar 

  • Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288–290 (1986)

    Article  ADS  Google Scholar 

  • Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. John Wiley & Sons, Hoboken (2008)

    Google Scholar 

  • Chandran, S., Sundaram, M., Kurudi, S., Das, B.K.: Design and fabrication of surface trimmed silicon-on-insulator waveguide with adiabatic spot-size converters. Appl. Opt. 56(6), 1708–1716 (2017)

    Article  ADS  Google Scholar 

  • Chen, S., Hao, R., Zhang, Y., Yang, H.: Optofluidics in bio-imaging applications. Photonics Res. 7(5), 532–542 (2019)

    Article  Google Scholar 

  • Cripe, J.: Radiation-pressure-mediated control of an optomechanical cavity. In: Cripe, J. (ed.) Broadband Measurement and Reduction of Quantum Radiation Pressure Noise in the Audio Band, pp. 67–79. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-45031-1_4

    Chapter  Google Scholar 

  • Dash, A., Samanta, C., Ranganath, P., Selvaraja, S., Naik, A.: Optical gradient force for tuning, actuation, and manipulation of nonlinearity in graphene nanomechanical resonator. J. Opt. 21(6), 065803 (2019)

    Article  ADS  Google Scholar 

  • Dash, A., Selvaraja, S., Naik, A.: Probing optical mode hybridization in an integrated graphene nano-optomechanical system. JOSA B 37(4), 1122–1126 (2020)

    Article  ADS  Google Scholar 

  • Debnath, K., et al.: Low-loss silicon waveguides and grating couplers fabricated using the anisotropic wet etching technique. Front. Mater. 3, 10 (2016)

    ADS  Google Scholar 

  • Dong, B., et al.: A silicon-nanowire memory driven by optical gradient force-induced bistability. Appl. Phys. Lett. 107(26), 261111 (2015)

    Article  ADS  Google Scholar 

  • Fanid, A.T., Rostami, A.: A proposal for wide range wavelength switching process using optical force. Phys. Scr. 96(12), 125537 (2021)

    Article  ADS  Google Scholar 

  • Farman, F., Bahrampour, A.: Effects of optical parametric amplifier pump phase noise on the cooling of optomechanical resonators. JOSA B 30(7), 1898–1904 (2013)

    Article  ADS  Google Scholar 

  • Fu, Y.H., Kuznetsov, A.I., Miroshnichenko, A.E., Yu, Y.F., Luk’yanchuk, B.: Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4(1), 1–6 (2013)

    Article  Google Scholar 

  • Grigorenko, A., Roberts, N., Dickinson, M., Zhang, Y.: Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics 2(6), 365 (2008)

    Article  ADS  Google Scholar 

  • Haase, M., Schäfer, H.: Upconverting nanoparticles. Angew. Chem. Int. Ed. 50(26), 5808–5829 (2011)

    Article  Google Scholar 

  • Hajizadeh, F., Reihani, S.N.S.: Optimized optical trapping of gold nanoparticles. Opt. Express 18(2), 551–559 (2010)

    Article  ADS  Google Scholar 

  • Hong, J., Spring, A.M., Qiu, F., Yokoyama, S.: A high-efficiency silicon nitride waveguide grating coupler with a multilayer bottom reflector. Sci. Rep. 9(1), 1–8 (2019)

    Article  Google Scholar 

  • Hunsperger, R.G.: Integrated Optics. Springer, Berlin (1995)

    Book  Google Scholar 

  • Juan, M.L., Righini, M., Quidant, R.: Plasmon nano-optical tweezers. Nat. Photonics 5(6), 349 (2011)

    Article  ADS  Google Scholar 

  • Junaid, S., et al.: Video-rate, mid-infrared hyperspectral upconversion imaging. Optica 6(6), 702–708 (2019)

    Article  ADS  Google Scholar 

  • Komoto, S., et al.: Optical trapping of polystyrene nanoparticles on black silicon: implications for trapping and studying bacteria and viruses. ACS Appl. Nano Mater. 3(10), 9831–9841 (2020)

    Article  Google Scholar 

  • Li, M., Pernice, W., Xiong, C., Baehr-Jones, T., Hochberg, M., Tang, H.: Harnessing optical forces in integrated photonic circuits. Nature 456(7221), 480 (2008)

    Article  ADS  Google Scholar 

  • Li, H., Noh, J.W., Chen, Y., Li, M.: Enhanced optical forces in integrated hybrid plasmonic waveguides. Opt. Express 21(10), 11839–11851 (2013)

    Article  ADS  Google Scholar 

  • Liu, X., Zhao, D.: Optical trapping Rayleigh particles by using focused multi-Gaussian Schell-model beams. Appl. Opt. 53(18), 3976–3981 (2014)

    Article  ADS  Google Scholar 

  • Liu, W., Zhang, J., Lei, B., Ma, H., Xie, W., Hu, H.: Ultra-directional forward scattering by individual core-shell nanoparticles. Opt. Express 22(13), 16178–16187 (2014)

    Article  ADS  Google Scholar 

  • Liu, X., Yan, C.-H., Capobianco, J.A.: Photon upconversion nanomaterials. Chem. Soc. Rev. 44(6), 1299–1301 (2015)

    Article  Google Scholar 

  • Liu, L., Yue, J., Li, Z.: All-optical switch based on a fiber-chip-fiber optomechanical system with ultrahigh extinction ratio. IEEE Photonics J. 9(3), 1–8 (2017)

    Article  Google Scholar 

  • Luke, K., Okawachi, Y., Lamont, M.R., Gaeta, A.L., Lipson, M.: Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40(21), 4823–4826 (2015)

    Article  ADS  Google Scholar 

  • Metcalfe, M.: Applications of cavity optomechanics. Appl. Phys. Rev. 1(3), 031105 (2014)

    Article  ADS  Google Scholar 

  • Nan, F., Yan, Z.: Sorting metal nanoparticles with dynamic and tunable optical driven forces. Nano Lett. 18(7), 4500–4505 (2018)

    Article  ADS  Google Scholar 

  • Paiè, P., Zandrini, T., Vázquez, R.M., Osellame, R., Bragheri, F.: Particle manipulation by optical forces in microfluidic devices. Micromachines 9(5), 200 (2018)

    Article  Google Scholar 

  • Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press, Cambridge (1998)

    Google Scholar 

  • Pernice, W., Li, M., Fong, K.Y., Tang, H.X.: Modeling of the optical force between propagating lightwaves in parallel 3D waveguides. Opt. Express 17(18), 16032–16037 (2009)

    Article  ADS  Google Scholar 

  • Povinelli, M.L., et al.: Evanescent-wave bonding between optical waveguides. Opt. Lett. 30(22), 3042–3044 (2005)

    Article  ADS  Google Scholar 

  • Roels, J., De Vlaminck, I., Lagae, L., Maes, B., Van Thourhout, D., Baets, R.: Tunable optical forces between nanophotonic waveguides. Nat. Nanotechnol. 4(8), 510 (2009)

    Article  ADS  Google Scholar 

  • Shackelford, J.F., Alexander, W.: CRC Materials Science and Engineering Handbook. CRC Press, Boca Raton (2000)

    Book  Google Scholar 

  • Shalin, A.S., Ginzburg, P., Belov, P.A., Kivshar, Y.S., Zayats, A.V.: Nano-optomechanical effects in plasmonic waveguides. Laser Photonics Rev. 8(1), 131–136 (2014)

    Article  ADS  Google Scholar 

  • Shen, F., An, N., Tao, Y., Zhou, H., Jiang, Z., Guo, Z.: Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particles. Nanophotonics 6(5), 1063 (2017)

    Article  Google Scholar 

  • Shi, Y., et al.: Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci. Adv. 4(1), eaao0773 (2018)

    Article  ADS  Google Scholar 

  • Tsuchizawa, T., et al.: Si photonics platform and its fabrication. In: The 5th International Symposium on Advanced Science and Technology of Silicon Materials (JSPS Si Symposium), 2008.

  • Wang, S., Ding, T.: Optical-force-directed single-particle-based track etching in polystyrene films. Nanotechnology 30(30), 305304 (2019)

    Article  Google Scholar 

  • Wang, M.M., et al.: Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23(1), 83–87 (2005)

    Article  Google Scholar 

  • Xin, H., Cheng, C., Li, B.: Trapping and delivery of Escherichia coli in a microfluidic channel using an optical nanofiber. Nanoscale 5(15), 6720–6724 (2013)

    Article  ADS  Google Scholar 

  • Xin, H., Li, Y., Liu, Y.C., Zhang, Y., Xiao, Y.F., Li, B.: Optical forces: from fundamental to biological applications. Adv. Mater. 32(37), 2001994 (2020)

    Article  Google Scholar 

  • Xu, P., et al.: High-efficiency wideband SiN x-on-SOI grating coupler with low fabrication complexity. Opt. Lett. 42(17), 3391–3394 (2017)

    Article  ADS  Google Scholar 

  • Xu, X., Wang, G., Jiao, W., Ji, W., Jiang, M., Zhang, X.: Multi-level sorting of nanoparticles on multi-step optical waveguide splitter. Opt. Express 26(22), 29262–29271 (2018)

    Article  ADS  Google Scholar 

  • Yang, X., Liu, Y., Oulton, R.F., Yin, X., Zhang, X.: Optical forces in hybrid plasmonic waveguides. Nano Lett. 11(2), 321–328 (2011)

    Article  ADS  Google Scholar 

  • Yao, Z., Kwan, C.C., W. Poon, A.W.O.: An optofluidic “tweeze-and-drag” cell stretcher in a microfluidic channel," Lab on a Chip, (2020)

  • Yu, J., et al.: Sensing and exploiting static Femto-Newton optical forces by a nanofiber with white-light interferometry. ACS Photonics 5(8), 3205–3213 (2018)

    Article  Google Scholar 

  • Zhang, P., Shen, N.-H., Koschny, T., Soukoulis, C.M.: Surface-plasmon-mediated gradient force enhancement and mechanical state transitions of graphene sheets. ACS Photonics 4(1), 181–187 (2017)

    Article  Google Scholar 

  • Zhang, Y., et al.: A broadband and low-power light-control-light effect in a fiber-optic nano-optomechanical system. Nanoscale 12(17), 9800–9809 (2020)

    Article  Google Scholar 

  • Zhao, X., Zhao, N., Shi, Y., Xin, H., Li, B.: Optical fiber tweezers: a versatile tool for optical trapping and manipulation. Micromachines 11(2), 114 (2020)

    Article  Google Scholar 

  • Zheng, H., et al.: Accurate measurement of nanomechanical motion in a fiber-taper nano-optomechanical system. Appl. Phys. Lett. 115(1), 13104 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rostami.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghizad Fanid, A., Rostami, A. A proposal for optomechanical bichromatic wavelength switching for two-color up-conversion application. Opt Quant Electron 54, 532 (2022). https://doi.org/10.1007/s11082-022-03906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03906-2

Keywords

Navigation