Skip to main content
Log in

Performance analysis of organic material assisted dynamically tunable excitation of optical Tamm state

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The manuscript presents the tunable excitation characteristics of an optical Tamm state (OTS). The tunability is obtained by integrating a functional organic crystal DAST (4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate) material with conventional one-dimensional photonic crystal (1D-PhC) structure. The DAST layer is deliberately introduced at the top of the structure to excite a plasmonic-like mode called OTS. The device structure is thoroughly optimized to excite the OTS at a 632.8 nm operating wavelength. The OTS excitation is analyzed analytically by angular interrogation, wavelength interrogation methods, and electrical field distribution interrogation. The dispersion analysis exhibits a strong excitation of OTS at the top interface when a polychromatic light is incident at a 45.11° incidence angle. This demonstrates a post-fabrication 47 nm dynamic wavelength tuning of excited Tamm mode by applying a ± 5 V bias voltage. Additionally, the Tamm mode response is very stable, which requires only a 5.7° variation in incidence angle to excite the Tamm at a constant 632.8 nm operating wavelength for the corresponding bias voltage variation of ± 5 V. This shows its potential applications in tunable stable optical sensors, dynamic color filtering and displays, and short focal length tuning compact imagers. This novel integration of organic electro-optical material with 1D-PhC will enhance its applicability in future tunable optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data underlying the results presented in this paper is not publicly available at this time but may be obtained from the corresponding author upon reasonable request.

References

  • Alam, M., Massoud, Y.: RLC ladder model for scattering in single metallic nanoparticles. IEEE Trans. Nanotechnol. (2006). https://doi.org/10.1109/TNANO.2006.880403

    Article  Google Scholar 

  • Brahmachari, K., Ray, M.: Modelling and performance analysis of a plasmonic biosensor comprising of silicon and chalcogenide materials for detecting refractive index variations of hemoglobin in near infrared. Optik (stuttg). (2016). https://doi.org/10.1016/j.ijleo.2015.12.148

    Article  Google Scholar 

  • Barvestani, J., Kalafi, M., Vala, A.: Surface optical waves in semi-infinite one-dimensional photonic crystals containing alternating layers of positive and negative media with a cap layer. Acta Physica Polonica A - ACTA PHYS POL a. 112, 1089 (2007). https://doi.org/10.12693/APhysPolA.112.1089

    Article  ADS  Google Scholar 

  • Chikhi, M., Boukabrine, F., Benseddik, N.: High-Sensitivity Tunable Bloch Surface Waves’ Biosensor Using Nanocomposite Cap Layer. Physica Status Solidi (a) Appl. Mater. Sci. (2022). https://doi.org/10.1002/pssa.202100607

    Article  Google Scholar 

  • Choi, C.J., Belobraydich, A.R., Chan, L.L., Mathias, P.C., Cunningham, B.T.: Comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Anal Biochem. (2010). https://doi.org/10.1016/j.ab.2010.06.009

    Article  Google Scholar 

  • Das, D., Saini, J., Goyal, A.K., Massoud, Y.: Exponentially index modulated nanophotonic resonator for high-performance sensing applications. Sci. Rep. 13, 1431 (2023). https://doi.org/10.1038/s41598-023-28235-6

    Article  ADS  Google Scholar 

  • Du, K., Barkaoui, H., Zhang, X., Jin, L., Song, Q., Xiao, S.: Optical metasurfaces towards multifunctionality and tunability. Nanophotonics 11(9), 1761–1781 (2022). https://doi.org/10.1515/nanoph-2021-0684

  • Duan, X., Liu, N.: Magnesium for dynamic nanoplasmonics. Acc. Chem. Res. (2019). https://doi.org/10.1021/acs.accounts.9b00157

    Article  Google Scholar 

  • Dubey, R., Barakat, E., Herzig, H.P.: Bloch Surface Based Platform for Optical Integration. TOM 5—Metamaterials, Photonic Crystals and Plasmonics: Fundamentals and Applications, Berlin, Germany (2014)

  • Dubey, R., Barakat, E., Herzig, H.P.: Bloch surface waves based platform for integrated optics. In: 2015a IEEE Photonics Conference, IPC 2015a (2015a)

  • Dubey, R., Barakat, E., Herzig, H.P.: Near field investigation of bloch surface based platform for 2D integrated optics. Prague, Czech Republic, PIERS Progress In Electromagnetics Research Symposium (2015b)

    Google Scholar 

  • Dubey, R., Vosoughi Lahijani, B., Kim, M.-S., Barakat, E., Häyrinen, M., Roussey, M., Kuittinen, M., Herzig, H.P.: Near-field investigation of Bloch surface wave based 2D optical components. In: Integrated Optics: Devices, Materials, and Technologies XXI (2017a)

  • Dubey, R., Lahijani, B., Häyrinen, M., Roussey, M., Kuittinen, M., Herzig, H.: Ultra-thin Bloch-surface-wave-based reflector at telecommunication wavelength. Photon. Res. 5(5), 494–499 (2017b). https://doi.org/10.1364/PRJ.5.000494.

  • Dutta, H.S., Goyal, A.K., Pal, S.: Analysis of dispersion diagram for high performance refractive index sensor based on photonic crystal waveguides. Photon. Nanostruct. (2017). https://doi.org/10.1016/j.photonics.2016.11.004

    Article  Google Scholar 

  • Ebermann, M., Neumann, N., Hiller, K., Seifert, M., Meinig, M., Kurth, S.: Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review. In: MOEMS and Miniaturized Systems XV (2016)

  • Farhadi, P., Rezaei, B.: Tunable terahertz Bloch surface waves in one-dimensional photonic crystals with a Dirac semimetal cap layer. Optik 265, 169538 (2022)

    Article  ADS  Google Scholar 

  • Goyal, A.K., Dutta, H.S., Pal, S.: Design and analysis of photonic crystal micro-cavity based optical sensor platform. In: AIP Conference Proceedings (2016b)

  • Goyal, A.K., Dutta, H.S., Singh, S., Kaur, M., Husale, S., Pal, S.: Realization of large-scale photonic crystal cavity-based devices. J. Micro/nanolith. MEMS MOEMS 15(3), 031608 (2016b)

    Article  ADS  Google Scholar 

  • Goyal, A.K., Kumar, A., Massoud, Y.: Thermal stability analysis of surface wave assisted bio-photonic sensor. Photonics 9(5), 324 (2022a)

    Article  Google Scholar 

  • Goyal, A.K., Kumar, A., Massoud, Y.: Performance analysis of DAST material-assisted photonic-crystal-based electrical tunable optical filter. Crystals (Basel). 12, 992 (2022b). https://doi.org/10.3390/cryst12070992

  • Goyal, A.K., Kumar, A., Massoud, Y.: Analysis of interface mode localization in disordered photonic crystal structure. J. Nanophoton. 16(4), 046007 (2022c). https://doi.org/10.1117/1.JNP.16.046007

  • Goyal, A.K., Massoud, Y.: Interface edge modes confinement in dielectric based quasi-periodic photonic crystal structure. Photonics 9(10), 676 (2022)

    Article  Google Scholar 

  • Goyal, A.K., Pal, S.: Design analysis of Bloch surface wave based sensor for haemoglobin concentration measurement. Appl. Nanosci. (switzerland). 10, 3639–3647 (2020). https://doi.org/10.1007/s13204-020-01437-4

    Article  ADS  Google Scholar 

  • Goyal, A.K., Saini, J.: Performance analysis of Bloch surface wave-based sensor using transition metal dichalcogenides. Appl. Nanosci. (switzerland). 10, 4307–4313 (2020). https://doi.org/10.1007/s13204-020-01538-0

    Article  ADS  Google Scholar 

  • Guo, J., Tu, Y., Yang, L., Zhang, R., Wang, L., Wang, B.: Electrically tunable gap surface plasmon-based metasurface for visible light. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-14583-7

    Article  Google Scholar 

  • Hajian, H., Rezaei, B., Vala, A.S., Kalafi, M.: Tuned switching of surface waves by a liquid crystal cap layer ign one-dimensional photonic crystals. Appl. Opt. (2012). https://doi.org/10.1364/AO.51.002909

    Article  Google Scholar 

  • Hajian, H., Soltani-Vala, A., Kalafi, M.: Controlled switching of surface waves in 1D photonic crystals by a thin nonlinear cap layer. Opt. Commun. (2010). https://doi.org/10.1016/j.optcom.2010.07.019

    Article  Google Scholar 

  • Herzig, H.P., Barakat, E., Yu, L., Dubey, R.: Bloch surface waves, a 2D platform for planar optical integration. In: 2014 13th Workshop on Information Optics, WIO 2014 (2014)

  • Jazbinsek, M., Mutter, L., Günter, P.: Photonic applications with the organic nonlinear optical crystal DAST. IEEE J. Sel. Top. Quant. Electron. 14 (2008). https://doi.org/10.1109/JSTQE.2008.921407

  • Jeong, H.D., Lee, S.Y.: Tunable plasmonic absorber using a nano slit array patterned on a Ge2Sb2Te5-inserted Fabry-Perot resonator. J. Light. Technol. 36, 5857–5862 (2018)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic crystals: Molding the flow of light (2011)

  • Meade, R.D., Brommer, K.D., Rappe, A.M., Joannopoulos, J.D.: Electromagnetic Bloch waves at the surface of a photonic crystal. Phys Rev b. (1991). https://doi.org/10.1103/PhysRevB.44.10961

    Article  Google Scholar 

  • Meng, Q.Q., Zhao, X., Lin, C.Y., Chen, S.J., Ding, Y.C., Chen, Z.Y.: Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors (switzerland). (2017). https://doi.org/10.3390/s17081846

    Article  Google Scholar 

  • Meng, Y., Chen, Y., Lu, L., Ding, Y., Cusano, A., Fan, J.A., Hu, Q., Wang, K., Xie, Z., Liu, Z., Yang, Y., Liu, Q., Gong, M., Xiao, Q., Sun, S., Zhang, M., Yuan, X., Ni, X.: Optical meta-waveguides for integrated photonics and beyond (2021)

  • Menotti, M., Liscidini, M.: Optical resonators based on Bloch surface waves. J. Opt. Soc. Am. B. (2015). https://doi.org/10.1364/josab.32.000431

    Article  Google Scholar 

  • Neubrech, F., Duan, X., Liu, N.: Dynamic plasmonic color generation enabled by functional materials. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.abc2709

    Article  Google Scholar 

  • Ouyang, Q., Zeng, S., Jiang, L., Hong, L., Xu, G., Dinh, X.Q., Qian, J., He, S., Qu, J., Coquet, P., Yong, K.T.: Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci Rep. (2016). https://doi.org/10.1038/srep28190

    Article  Google Scholar 

  • Ratra, K., Singh, M., Goyal, A.K.: Design and analysis of omni-directional solar spectrum reflector using one-dimensional photonic crystal. J. Nanophoton. 14(2), 026005 (2020)

    Article  ADS  Google Scholar 

  • Ratra, K., Singh, M., Goyal, AK., Kaushik, R.: Design and Analysis of Broadband Reflector for Passive Radiative Cooling. 5th International Conference on Signal Processing and Communication (ICSC), 300 (2019).

  • Robertson, W.M.: Experimental Measurement of the Effect of Termination on Surface Electromagnetic Waves in One-Dimensional Photonic Bandgap Arrays. (1999)

  • Seitz, W.R.: Chemical sensors based on fiber optics. Anal. Chem. (1984). https://doi.org/10.1021/ac00265a711

    Article  Google Scholar 

  • Shahabuddin, M., McDowell, T., Bonner, C.E., Noginova, N.: Enhancement of electrochromic polymer switching in plasmonic nanostructured environment. ACS Appl. Nano Mater. (2019). https://doi.org/10.1021/acsanm.9b00147

    Article  Google Scholar 

  • Sharma, A.K.: Plasmonic biosensor for detection of hemoglobin concentration in human blood: Design considerations. J. Appl. Phys. 114, 1 (2013). https://doi.org/10.1063/1.4816272

    Article  Google Scholar 

  • Sharma, M., Hendler, N., Ellenbogen, T.: Electrically switchable color tags based on active liquid-crystal plasmonic metasurface platform. Adv. Opt. Mater. (2020). https://doi.org/10.1002/adom.201901182

    Article  Google Scholar 

  • Vicario, C., Jazbinsek, M., Ovchinnikov, A.V., Chefonov, O.V., Ashitkov, S.I., Agranat, M.B., Hauri, C.P.: High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser. Opt. Express. (2015). https://doi.org/10.1364/oe.23.004573

    Article  Google Scholar 

  • Wang, Z., Zhou, P., Zheng, G.: Electrically switchable highly efficient epsilon-near-zero metasurfaces absorber with broadband response. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102376

    Article  Google Scholar 

  • Wu, X., Barakat, E., Yu, L., Sun, L., Wang, J., Tan, Q., Herzig, H.P.: Phase-sensitive near field investigation of bloch surface wave propagation in curved waveguides. J. Eur. Opt. Soc. (2014). https://doi.org/10.2971/jeos.2014.14049

    Article  Google Scholar 

  • Wuttig , M., Bhaskaran, H., Taubner, T.: Phase-change materials for non-volatile photonic applications. (2017)

  • Yablonovitch, E.: Inhibited Spontaneous Emission in Solid-State Physics and Electronics. (1987)

  • Yu, L.: Near-field Imaging: Investigations on Bloch Surface Wave Based 2D Optics and the Development of Polarization-retrieved characterization. Doctoral dissertation, EPFL (2013).

  • Yu, L., Barakat, E., Sfez, T., Hvozdara, L., Di Francesco, J., Herzig, H.P.: Manipulating bloch surface waves in 2D: A platform concept-based flat lens. Light Sci Appl. (2014). https://doi.org/10.1038/lsa.2014.5

    Article  Google Scholar 

  • Zhao, Z.: Sn dopants improve the visible transmittance of VO2 films achieving excellent thermos-chromic performance for smart window. Sol. Energy Mater. Sol. Cells. 209, 110443 (2020)

    Article  Google Scholar 

  • Zhu, Y.J., Huang, X.G., Mei, X.: A surface plasmon polariton electro-optic switch based on a metal-insulator-metal structure with a strip waveguide and two side-coupled cavities. Chin. Phys. Lett. (2012). https://doi.org/10.1088/0256-307X/29/6/064214

    Article  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.K.G., and J.S.; Formal analysis, A.K.G. and J.S.; Investigation, Y.M.; Methodology, A.K.G.; Validation, A.K.G., and J.S.; Writing-original draft, A.K.G., and J.S.; Writing-review and editing, A.K.G. and Y.M.; Supervision, Y.M.

Corresponding author

Correspondence to Amit Kumar Goyal.

Ethics declarations

Competing interest

Authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, A.K., Saini, J. & Massoud, Y. Performance analysis of organic material assisted dynamically tunable excitation of optical Tamm state. Opt Quant Electron 55, 563 (2023). https://doi.org/10.1007/s11082-023-04843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04843-4

Keywords

Navigation