Skip to main content
Log in

Oxidation Behavior of Candidate NiCr Alloys for Engine Exhaust Valves: Part I—Effect of Minor Alloying Elements

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Oxidation-induced degradation of structural materials employed as exhaust valves within internal combustion engines (ICEs) will be a relevant life-limiting mechanism, in addition to creep and mechanical fatigue, due to ever-increasing severity of operating temperatures and pressures. Ni–Cr-based alloys, which form external chromia-based scales at the relevant operating temperatures are being considered as suitable candidate materials. Thermal cycling of these alloys in water vapor-containing atmospheres, such as those present during hydrocarbon fuel combustion within ICEs, can considerably influence their oxidation behavior. In this study, the role of typical alloying additions such as Mn, Si, Al and Ti on the cyclic oxidation behavior of model NiCr–X (X = Mn,Si,Al,Ti) alloys exposed in dry air and air + 10% \(\hbox {H}_{2}\hbox {O}\) at \(800\, ^{\circ }\hbox {C}\) and \(950\, ^{\circ }\hbox {C}\) was investigated. Combined additions of Mn and Si reduced scaling rates compared to binary Ni–22Cr alloys. The presence of water vapor possibly suppressed formation of NiMnCr spinel and thereby the Cr depletion in the alloy. Combined Al and Ti additions mainly resulted in accelerated oxidation kinetics due to the Ti doping of chromia scales. More porous external scales were observed in water vapor leading to a much deeper depth of nitridation in the Ni–22Cr–Al–Ti alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. D. Pierce, A. Haynes, J. Hughes, R. Graves, P. Maziasz, G. Muralidharan, A. Shyam, B. Wang, R. England and C. Daniel, Progress in Materials Science 103, 109–179 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.004.

  2. J. R. Davis, et al., ASM Specialty Handbook: Heat-Resistant Materials, (ASM International, 1997).

  3. J. Heywood, Internal Combustion Engine Fundamentals, (McGraw-Hill Education, 1988).

  4. B. Gleeson and M. A. Harper, Oxidation of Metals 49, 373–399 (1998).

    Article  CAS  Google Scholar 

  5. S. Osgerby, K. Berriche-Bouhanek and H. E. Evans, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 412, 2005 (182–190). https://doi.org/10.1016/j.msea.2005.08.193.

    Article  CAS  Google Scholar 

  6. V. P. Deodeshmukh, S. K. Srivastava, in ASME Turbo Expo 2009: Power for Land, Sea, and Air, (American Society of Mechanical Engineers, 2009), pp. 885–892.

  7. H. Asteman, J.-E. Svensson, M. Norell and L.-G. Johansson, Oxidation of Metals 54, 11–26 (2000).

    Article  CAS  Google Scholar 

  8. E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky and M. D. Allendorf, Journal of Physical Chemistry A 111, 1971–1980 (2007). https://doi.org/10.1021/jp0647380.

    Article  CAS  Google Scholar 

  9. G. Wood and D. Whittle, Corrosion Science 6, 129–147 (1966). https://doi.org/10.1016/S0010-938X(66)80004-5.

    Article  CAS  Google Scholar 

  10. D. L. Douglass and J. S. Armijo, Oxidation of Metals 2, 207–231 (1970). https://doi.org/10.1007/BF00603657.

    Article  CAS  Google Scholar 

  11. C. L. Angerman, Oxidation of Metals 5, 149–167 (1972). https://doi.org/10.1007/BF00610842.

    Article  CAS  Google Scholar 

  12. B. Li and B. Gleeson, Oxidation of Metals 65, 101–122 (2006). https://doi.org/10.1007/s11085-006-9003-4.

    Article  CAS  Google Scholar 

  13. J. Zurek, D. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Materials Science and Engineering: A 477, 259–270 (2008). https://doi.org/10.1016/j.msea.2007.05.035.

    Article  CAS  Google Scholar 

  14. A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 75, 143–166 (2011). https://doi.org/10.1007/s11085-010-9225-3.

    Article  CAS  Google Scholar 

  15. M. Hansel, L. Garcia-Fresnillo, S. L. Tobing and V. Shemet, Materials at High Temperatures 29, 187–192 (2012). https://doi.org/10.3184/096034012x13322698137785.

    Article  Google Scholar 

  16. D. Simon, B. Gorr, M. Hänsel, V. Shemet, H. J. Christ and W. J. Quadakkers, Materials at High Temperatures 32, 238–247 (2015). https://doi.org/10.1179/0960340914Z.000000000108.

    Article  CAS  Google Scholar 

  17. A. Jalowicka, R. Duan, P. Huczkowski, A. Chyrkin, D. Grüner, B. A. Pint, K. Unocic and W. Quadakkers, Journal of Metals 67, 2573–2588 (2015). https://doi.org/10.1007/s11837-015-1645-8.

    Article  CAS  Google Scholar 

  18. J. Meyer, V. Deodeshmukh, in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Vol. 6 (Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy), p. V006T24A016. https://doi.org/10.1115/gt2017-64605.

  19. P. Huczkowski, W. Lehnert, H. H. Angermann, A. Chyrkin, R. Pillai, D. Gruner, E. Hejrani and W. J. Quadakkers, Materials and Corrosion-Werkstoffe Und Korrosion 68, 159–170 (2017). https://doi.org/10.1002/maco.201608831.

    Article  CAS  Google Scholar 

  20. B. A. Pint, R. Peraldi, P. J. Maziasz, High Temperature Corrosion and Protection of Materials 6, Prt 1 and 2, Proceedings 461–464, 815–822 (2004). https://doi.org/10.4028/www.scientific.net/MSF.461-464.815.

  21. C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena and K. W. Eliceiri, BMC Bioinformatics 18, 529 (2017). https://doi.org/10.1186/s12859-017-1934-z.

    Article  Google Scholar 

  22. F. H. Stott, Materials Science and Technology 5, 734–740 (1989). https://doi.org/10.1179/mst.1989.5.8.734.

    Article  CAS  Google Scholar 

  23. X. Ledoux, S. Mathieu, M. Vilasi, Y. Wouters, P. Del-Gallo and M. Wagner, Oxidation of Metals 80, 25–35 (2013). https://doi.org/10.1007/s11085-013-9367-1.

    Article  CAS  Google Scholar 

  24. T. Perez, L. Latu-Romain, R. Podor, J. Lautru, Y. Parsa, S. Mathieu, M. Vilasi and Y. Wouters, Oxidation of Metals 89, 781–795 (2018). https://doi.org/10.1007/s11085-017-9819-0.

    Article  CAS  Google Scholar 

  25. D. Kim, C. Jang and W. S. Ryu, Oxidation of Metals 71, 271–293 (2009). https://doi.org/10.1007/s11085-009-9142-5.

    Article  CAS  Google Scholar 

  26. D. J. Young and B. A. Pint, Oxidation of Metals 66, 137–153 (2006). https://doi.org/10.1007/s11085-006-9030-1.

    Article  CAS  Google Scholar 

  27. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 81–93 (1992). https://doi.org/10.1007/bf00665632.

    Article  CAS  Google Scholar 

  28. M. J. Bennett and J. B. Price, Journal of Materials Science 16, 170–188 (1981). https://doi.org/10.1007/Bf00552071.

    Article  CAS  Google Scholar 

  29. H. E. Evans, D. A. Hilton, R. A. Holm and S. J. Webster, Oxidation of Metals 19, 1–18 (1983). https://doi.org/10.1007/Bf00656225.

    Article  CAS  Google Scholar 

  30. A. Vayyala, I. Povstugar, D. Naumenko, W. J. Quadakkers, H. Hattendorf, J. Mayer, Journal of the Electrochemical Society 167, ARTN 061502. https://doi.org/10.1149/1945-7111/ab7d2e.

  31. J. S. Armijo, Oxidation of Metals 1, 171–198 (1969). https://doi.org/10.1007/BF00603514.

    Article  CAS  Google Scholar 

  32. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782–1790 (1971).

    Article  CAS  Google Scholar 

  33. A. Chyrkin, R. Pillai, T. Galiullin, E. Wessel, D. Gruner and W. J. Quadakkers, Corrosion Science 124, 138–149 (2017). https://doi.org/10.1016/j.corsci.2017.05.017.

    Article  CAS  Google Scholar 

  34. G. Hultquist, B. Tveten and E. Hornlund, Oxidation of Metals 54, 1–10 (2000). https://doi.org/10.1023/A:1004610626903.

    Article  CAS  Google Scholar 

  35. M. Michalik, M. Hansel, J. Zurek, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 22, 213–221 (2005).

    Article  CAS  Google Scholar 

  36. M. Hansel, W. J. Quadakkers, D. J. Young, Oxidation of Metals 59, 285–301 (2003). URL <Go to ISI>://WOS:000182551100005.

  37. D. Whittle, D. Evans, D. Scully and G. Wood, Acta Metallurgica 15, 1421–1430 (1967). https://doi.org/10.1016/0001-6160(67)90173-3.

    Article  CAS  Google Scholar 

  38. A. Chyrkin, R. Pillai, H. Ackermann, H. Hattendorf, S. Richter, W. Nowak, D. Grüner and W. Quadakkers, Corrosion Science 96, 32–41 (2015). https://doi.org/10.1016/j.corsci.2015.03.019.

    Article  CAS  Google Scholar 

  39. J. H. Chen, P. M. Rogers and J. A. Little, Oxidation of Metals 47, 381–410 (1997). https://doi.org/10.1007/BF02134783.

    Article  CAS  Google Scholar 

  40. A. S. Nagelberg, Oxidation of Metals 17, 415–427 (1982). https://doi.org/10.1007/Bf00742121.

    Article  CAS  Google Scholar 

  41. E. Essuman, L. R. Walker, J. Maziasz and B. A. Pint, Materials Science and Technology 29, 822–827 (2013). https://doi.org/10.1179/1743284712y.0000000103.

    Article  CAS  Google Scholar 

  42. A. Naoumidis, H. A. Schulze, C. Garciarosales, Epdic 1: European Powder Diffraction, Pts 1 and 2 79, 691–695 (1991).

  43. P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, 1988).

  44. A. Holt and P. Kofstad, Solid State Ionics 117, 21–25 (1999). https://doi.org/10.1016/S0167-2738(98)00244-6.

    Article  CAS  Google Scholar 

  45. M. Michalik, S. L. Tobing, M. Hansel, V. Shemet, W. J. Quadakkers and D. J. Young, Materials and Corrosion-Werkstoffe Und Korrosion 65, 260–266 (2014). https://doi.org/10.1002/maco.201307160. URL <Go to ISI>://WOS:000332338100003.

  46. A. Jalowicka, W. Nowak, D. J. Young, V. Nischwitz, D. Naumenko and W. J. Quadakkers, Oxidation of Metals 83, 393–413 (2015).

    Article  CAS  Google Scholar 

  47. W. J. Nowak, P. Wierzba, D. Naumenko, W. J. Quadakkers and J. Sieniawski, Advances in Manufacturing Science and Technology 40, 41–52 (2016).

    Google Scholar 

  48. U. Krupp and H. J. Christ, Oxidation of Metals 52, 299–320 (1999). https://doi.org/10.1023/A:1018895628849.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G. Garner and G. Cox assisted with the experimental work at ORNL. V. Cox is thanked for metallographic preparation. T. Lowe is thanked for helping with microstructural characterization. P. Tortorelli and M. Brady are thanked for their valuable comments on the paper. This research was sponsored by the U.S. Department of Energy Office of Vehicle Technologies, Powertrain Materials Core Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pillai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, R., Romedenne, M., Haynes, J.A. et al. Oxidation Behavior of Candidate NiCr Alloys for Engine Exhaust Valves: Part I—Effect of Minor Alloying Elements. Oxid Met 95, 157–187 (2021). https://doi.org/10.1007/s11085-020-10017-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-10017-4

Keywords

Navigation