Skip to main content
Log in

Lessons Learned in Employing Data Analytics to Predict Oxidation Kinetics and Spallation Behavior of High-Temperature NiCr-Based Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Machine learning (ML) can offer many advantages in predicting material properties over traditional materials development methods based solely on limited experimental investigations or physical-based simulations with the capability to reduce development cost, risk, and time. However, so far, limited efforts have been made to predict alloy oxidation kinetics and spallation behavior via ML due to the lack of consistently measured and sufficient experimental data and the inherent complexity in oxidation behavior of multicomponent high-temperature alloys. A previous study reported the ability of ML to predict oxidation kinetics of NiCr-based alloys as a function of alloy composition and operating conditions. In the current work, the performance of a ML model in predicting rate constants and spallation probability was evaluated in light of the roles of the data distribution of the experimental dataset (data analytics), the alloy composition, the exposure environment and the chosen oxidation approach to extracting kinetic values from the measured mass changes (but using either a simple parabolic law or a statistical cyclic oxidation model). Potential strategies to improve the predictions and enhance the extrapolative capability of the previously trained model will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Pierce, A. Haynes, J. Hughes, R. Graves, P. Maziasz, G. Muralidharan, A. Shyam, B. Wang, R. England, and C. Daniel, Progress in Materials Science 103, 109 (2019).

  2. J. R. Davis, ASM Specialty Handbook - Heat-Resistant Materials. ASM International (1997). United States: ASM International.

  3. B. H. John, Internal Combustion Engine Fundamentals, Second Edition, 2nd edition. (New York: McGraw-Hill Education. ed. 2018)

  4. D. Wajszel, Journal of the Electrochemical Society 110, 504 (1963).

  5. C. S. Tedmon, Journal of the Electrochemical Society 113, 3 (1966).

  6. C. E. Lowell, C. A. Barrett, R. W. Palmer, J. V. Auping, and H. B. Probst, Oxidation Metals 36, 81 (1991).

  7. C. A. Barrett and A.F. Presler, NASA Technical Report D-8132, NASA Lewis Research Center; Cleveland, OH, United States (1976).

  8. R. Duan, A. Jalowicka, K. Unocic, B. A. Pint, P. Huczkowski, A. Chyrkin, D. Grüner, R. Pillai, and W. J. Quadakkers, Oxidation of Metals 87, 11 (2017).

  9. D. Poquillon and D. Monceau, Oxidation of Metals 59, 409 (2003).

  10. A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser, and W. J. Quadakkers, Oxidation of Metals 75, 143 (2011).

  11. A. Chyrkin, R. Pillai, H. Ackermann, H. Hattendorf, S. Richter, W. Nowak, D. Grüner, and W.J. Quadakkers, Corrosion Science 96, 32 (2015).

  12. R. Pillai, A. Chyrkin, T. Galiullin, E. Wessel, D. Grüner, and W. J. Quadakkers, Corrosion Science 127, 27 (2017).

  13. A. Chyrkin, W. G. Sloof, R. Pillai, T. Galiullin, D. Grüner, L. Singheiser, and W. J. Quadakkers, Materials at High Temperatures 32, 102 (2015).

  14. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).

  15. D. Shin, Y. Yamamoto, M. P. Brady, S. Lee, and J. A. Haynes, Acta Materialia 168, 321 (2019).

  16. Johannes J. Möller, Wolfgang Körner, Georg Krugel, Daniel F. Urban, and C. Elsässer, Acta Materialia 153, 53 (2018).

  17. W. Huang, P. Martin, and H. L. Zhuang, Acta Materialia 169, 225 (2019).

  18. C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, and Y. Su, Acta Materialia, 170, 109 (2019).

  19. C. Shen, C. Wang, X. Wei, Y. Li, S. van der Zwaag, and W. Xu, Acta Materialia 179, 201 (2019).

  20. J. C. Zhao and M. F. Henry, Advanced Engineering Materials 4, 501 (2002).

  21. S. Lee, J. Peng, D. Shin, and Y. S. Choi, Science and Technology of Advanced Materials 20, 972 (2019).

  22. Y. Zhang, C. Wen, C. Wang, S. Antonov, D. Xue, Y. Bai, and Y. Su, Acta Materialia 185, 528 (202a0).

  23. J. Peng, R. Pillai, M. Romedenne, B. A. Pint, G. Muralidharan, J. A. Haynes, and D. Shin, arXiv preprint arXiv 2102, 13261 (2021)

  24. D. J. Young, High temperature oxidation and corrosion of metals, (Oxford: Elsevier, 2008)

  25. G. Y. Lai, High-Temperature Corrosion and Materials Applications, (ASM International, 2007)

  26. S. K. Bhattacharya, R. Sahara, and T. Narushima, Oxidation of Metals 94, 205 (2020).

  27. A. Rahmel, W. J. Quadakkers, and M. Schutze, Werkstoffe Und Korrosion-Materials and Corrosion 46, 271 (1995).

  28. B. Pieraggi, Oxidation of Metals 27, 177 (1987).

  29. B. A. Pint, R. Peraldi, and P. J. Maziasz, High Temperature Corrosion and Protection of Materials 461–464, 815 (2004).

  30. J. L. Smialek, Metallurgical Transactions A 9, 309 (1978).

  31. B. Pieraggi, Oxidation of metals 27, 177 (1987).

  32. H. Hindam and D. Whittle, Oxidation of metals 18, 245 (1982).

  33. R. Pillai, S. Dryepondt, and B. A. Pint, Paper No. GT2019-90505, Proceedings of the Asme Turbo Expo: Turbomachinery Technical Conference and Exposition, Vol 6, 2019. https://doi.org/10.1115/GT2019-90505

  34. B. A. Pint, Oxidation of Metals 2021.

  35. Y. Yamamoto, G. Muralidharan, and M. P. Brady, Scripta Materialia 69, 816 (2013).

  36. B. A. Pint, Oxidation of Metals 45, 1 (1996).

  37. S. Chevalier, Materials and Corrosion-Werkstoffe Und Korrosion 65, 109 (2014).

  38. G. R. Wallwork, Reports on Progress in Physics 39, 401 (1976).

  39. C. S. Giggins and F.S. Pettit, Transactions of the Metallurgical Society of Aime 245, 2495 (1969).

  40. J. E. Croll and G.R. Wallwork, Oxidation of Metals 4, 121 (1972).

  41. J. H. Chen, P.M. Rogers, and J. A. Little, Materials Science Forum 251-2, 57 (1997).

  42. Pint, B., The use of model alloys to study the effect of alloy composition on steam and fireside corrosion. Paper No. 4279, NACE - International Corrosion Conference Series, March 9–13, 2014, San Antonio, Texas, USA 3497–3507

  43. V. P. Deodeshmukh, Oxidation of Metals 279, 567 (2013).

  44. E. Essuman, L. R. Walker, P. J. Maziasz, and B. A. Pint, Materials Science and Technology 29, 822 (2013).

  45. A. Jalowicka, W. Nowak, D. Naumenko, L. Singheiser, and W. J. Quadakkers, Materials and Corrosion-Werkstoffe Und Korrosion 65, 178 (2014).

  46. J. Meyer and V. Deodeshmukh. Long-Term Oxidation Resistance of Several Precipitation Strengthened Ni-Based Superalloys. in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. 2017.

  47. A. Chyrkin, R. Pillai, T. Galiullin, E. Wessel, D. Grüner, and W. J. Quadakkers Corrosion Science 124, 138 (2017).

  48. D. L. Douglass and J.S. Armijo, Oxidation of Metals 2, 207 (1970).

  49. F. H. Stott, Materials Science and Technology 5, 734 (1989).

  50. R. Pillai, M. Romedenne, J. A. Haynes, and B. A. Pint, Oxidation of Metals 95, 157 (2021).

  51. B. Li and B. Gleeson, Oxidation of Metals 65, 101 (2006).

  52. J. H. Chen, P. M. Rogers, and J. A. Little, Oxidation of Metals 47, 381 (1997).

  53. E. Essuman, L. R. Walker, P. J. Maziasz, and B. A. Pint, Materials Science and Technology 29, 822 (2013).

  54. R. Pillai, M. Romedenne, J. A. Haynes, B. A. Pint Pillai, Oxidation of Metals 95, 157 (2021).

  55. J. E. Nash and J.V. Sutcliffe, Journal of Hydrology 10, 282 (1970).

  56. R. H. McCuen, Z. Knight, and A.G. Cutter, Journal of Hydrologic Engineering 11, 597 (2006).

  57. R. E. Criss and W.E. Winston, Hydrological Processes 22, 2723 (2008).

  58. B. Schaefli B and H.V. Gupta, Hydrological Processes 21, 2075 (2007).

  59. A. H. Murphy, Monthly Weather Review 116, 2417 (1988).

  60. H. V. Gupta and H. Kling, Water Resources Research 47, W10601, (2011). https://doi.org/10.1029/2011WR010962

  61. H. V. Gupta, H. Kling, K. K. Yilmaz, and G. F. Martinez, Journal of Hydrology 377, 80 (2009).

  62. . O. H. J Christie, Analytica Chimica Acta. 223, 45 (1989).

  63. Y. Wang, S. Romano, V. Nguyen, J. Bailey, X. Ma, and S. T. Xia, Thirty-First Aaai Conference on Artificial Intelligence 31, 2754 (2017).

Download references

Acknowledgements

This research was sponsored by the Department of Energy, Vehicle Technologies Office, Propulsion Materials Program. This research used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725. The authors thank Chris Layton for his support on using CADES and George Garner for conducting the high-temperature exposures. P. Tortorelli and S. Dryepondt are thanked for their valuable comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pillai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, R., Romedenne, M., Peng, J. et al. Lessons Learned in Employing Data Analytics to Predict Oxidation Kinetics and Spallation Behavior of High-Temperature NiCr-Based Alloys. Oxid Met 97, 51–76 (2022). https://doi.org/10.1007/s11085-021-10076-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10076-1

Keywords

Navigation