Skip to main content

Advertisement

Log in

Exploring Material Solutions for Supercritical CO2 Applications above 800 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

There has been recent interest in exploring revolutionary supercritical CO2 (sCO2) power cycles, and this exploratory investigation was seeking materials with CO2 compatibility at up to 1200 °C. Initial exposures were conducted at 0.1 and 2 MPa CO2 for up to 1000 h at 900–1200 °C. As expected, specimens of Mo and W that might be used as matrix materials in cermets were rapidly attacked under these conditions. Even an alumina-forming FeCrAlMo alloy showed high mass gains in less than 100 h at 1200 °C due to the formation of Fe-rich oxide. However, at 900–1100 °C, more protective behavior was observed for FeCrAlMo specimens, with or without pre-oxidation, in 0.1 MPa CO2, but increased attack was observed in 2 MPa CO2. In contrast, most Ni-based alloys exposed at 900–1100 °C showed higher mass gains and thicker reaction products than formed in air. Thus, Ni-based alloys appear less compatible with CO2 environments above 800 °C compared to lower temperatures. Low mass gains were observed for CVD SiC at 900–1200 °C, but MoSi2 and Mo(Si,Al)2 specimens did not form protective scales under these conditions at 1000 and 1100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V. Dostal, P. Hejzlar, and M. J. Driscoll, The supercritical carbon dioxide power cycle: Comparison to other advanced power cycles. Nuclear Technology 154, (3), 2006 (283).

    Article  CAS  Google Scholar 

  2. H. Chen, D. Y. Goswami, and E. K. Stefanakos, A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable & Sustainable Energy Reviews 14, 2010 (3059).

    Article  CAS  Google Scholar 

  3. R. J. Allam, M. R. Palmer, G. W. Brown Jr., J. Fetvedt, D. Freed, H. Nomoto, M. Itoh, N. Okita, and C. Jones Jr., High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide. Energy Procedia 37, 2013 (1135).

    Article  CAS  Google Scholar 

  4. B. D. Iverson, T. M. Conboy, J. J. Pasch, and A. M. Kruizenga, Supercritical CO2 Brayton cycles for solar-thermal energy. Applied Energy 111, 2013 (957).

    Article  CAS  Google Scholar 

  5. I. G. Wright, B. A. Pint, J. P. Shingledecker and D. Thimsen, (2013) “Materials Considerations for Supercritical CO2 Turbine Cycles,” ASME Paper #GT2013–94941, presented at the International Gas Turbine & Aeroengine Congress & Exhibition, San Antonio, TX, June 3–7, 2013.

  6. V. T. Cheang, R. A. Hedderwick, and C. McGregor, Benchmarking supercritical CO2 cycles against steam Rankine cycles for Concentrated Solar Power. Solar Energy 113, 2015 (199).

    Article  CAS  Google Scholar 

  7. E. G. Feher, The Supercritical Thermodynamic Power Cycle. Energy Conversion 8, 1968 (85).

    Article  CAS  Google Scholar 

  8. H. J. Lee, H. Kim, S. H. Kim, and C. Jang, Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment. Corrosion Science 99, 2015 (227).

    Article  CAS  Google Scholar 

  9. R. I. Olivares, D. J. Young, P. Marvig, and W. Stein, Alloys SS316 and Hastelloy-C276 in Supercritical CO2 at High Temperature. Oxidation of Metals 84, 2015 (585).

    Article  CAS  Google Scholar 

  10. R. I. Olivares, D. J. Young, T. D. Nguyen, and P. Marvig, Resistance of High-Nickel, Heat-Resisting Alloys to Air and to Supercritical CO2 at High Temperatures. Oxidation of Metals 90, 2018 (1).

    Article  CAS  Google Scholar 

  11. R. P. Oleksak, J. H. Tylczak, C. S. Carney, G. R. Holcomb, and O. N. Dogan, High-Temperature Oxidation of Commercial Alloys in Supercritical CO2 and Related Power Cycle Environments. JOM 70, 2018 (1527).

    Article  CAS  Google Scholar 

  12. B. A. Pint, J. Lehmusto, M. J. Lance, and J. R. Keiser, The Effect of Pressure and Impurities on Oxidation in Supercritical CO2. Materials and Corrosion 70, 2019 (1400).

    Article  CAS  Google Scholar 

  13. B. A. Pint, R. Pillai, M. J. Lance, and J. R. Keiser, Effect of Pressure and Thermal Cycling on Long-Term Oxidation in CO2 and Supercritical CO2. Oxidation of Metals 94, 2020 (505).

    Article  Google Scholar 

  14. S. Q. Zhao, X. S. Xie, G. D. Smith, and S. J. Patel, Microstructural stability and mechanical properties of a new nickel based superalloy. Materials Science and Engineering A 355, 2003 (96).

    Article  Google Scholar 

  15. J. P. Shingledecker and G. M. Pharr, Testing and Analysis of Full-Scale Creep-Rupture Experiments on Inconel Alloy 740 Cold-Formed Tubing. Journal of Materials Engineering and Performance 22, 2013 (454).

    Article  CAS  Google Scholar 

  16. L. M. Pike, “Development of a Fabricable Gamma-Prime (γ´) Strengthened Superalloy,” in Superalloys 2008, R. C. Reed et al. eds TMS, Warrendale, PA, 2008, pp.191–200.

  17. R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert, “U.S. Program on Materials Technology for Ultra-Supercritical Coal Power Plants,” Journal of Materials Engineering and Performance 14 (3), 281 (2005).

  18. F. Starr, A. R. White, B. Kazimierzak, “Pressurized Heat Exchangers for 1100°C Operation Using ODS Alloys,” in: Materials for Advanced Power Engineering 1994, Eds. D. Coutsouradis, J. H. Davidson, J. Ewald, P. Greenfield, T. Khan, M. Malik, D. B. Meadowcroft, V. Regis, R. B. Scarlin, F. Schubert and D. V. Thornton; Kluwer Academic Publishers, Dordrecht, 1994 pp. 1393–1412.

  19. B. Jönsson and C. Svedberg, Limiting Factors for Fe-Cr-Al and NiCr in Controlled Industrial Atmospheres. Materials Science Forum 251–254, 1997 (551).

    Article  Google Scholar 

  20. R. Naslain, Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Composites Science and Technology 64, (2), 2004 (155).

    Article  CAS  Google Scholar 

  21. M. B. Dickerson, R. L. Snyder, and K. H. Sandhage, Dense, Near Net-Shaped, Carbide/Refractory Metal Composites at Modest Temperatures by the Displacive Compensation of Porosity (DCP) Method. Journal of the American Ceramic Society 85, 2002 (730).

    Article  CAS  Google Scholar 

  22. Z. Grzesik, M. B. Dickerson, and K. H. Sandhage, Incongruent reduction of tungsten carbide by a zirconium-copper melt. Journal of Materials Research 18, 2003 (2135).

    Article  CAS  Google Scholar 

  23. M. Caccia, M. Tabandeh-Khorshid, G. Itskos, A. R. Strayer, A. S. Caldwell, S. Pidaparti, S. Singnisai, A. D. Rohskopf, A. M. Schroeder, D. Jarrahbashi, T. Kang, S. Sahoo, N. R. Kadasala, A. Marquez-Rossy, M. H. Anderson, E. Lara-Curzio, D. Ranjan, A. Henry, and K. H. Sandhage, Ceramic-metal composites for heat exchangers in concentrated solar power plants. Nature 562, 2018 (406). https://doi.org/10.1038/s41586-018-0593-1.

    Article  CAS  Google Scholar 

  24. I. G. Wright, B. A. Pint, Y. Zhang, R. A. Bishop, J. C. Farmer, A. Jankowski, and R. B. Rebak, (2004) Preliminary High-temperature oxidation data in steam-CO2 in Support of the ZEST Process. NACE Paper 04–531, Houston, TX, presented at NACE Corrosion 2004, New Orleans, LA, March 2004.

  25. C. H. Oh, T. Lillo, W. Windes, T. Totemeier, B. Ward, Richard Moore, R. Barner, “Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility,” Idaho National Laboratory Report INL/EXT-06–01271, 2006.

  26. R. Moore and T. Conboy, “Metal Corrosion in a Supercritical Carbon Dioxide – Liquid Sodium Power Cycle,” Sandia National Laboratory Report SAND2012–0184, 2012.

  27. B. A. Pint and R. G. Brese, “High-Temperature Materials,” Chapter 4 in Fundamentals and Applications of Supercritical Carbon Dioxide Based Power Cycles, K. Brun and P. Friedman, eds., Elsevier, London, 2017, pp.67–104.

  28. B. A. Pint and J. R. Keiser, Initial Assessment of Ni-Base Alloy Performance in 0.1 MPa and Supercritical CO2. JOM 67, 2015 (2615).

    Article  CAS  Google Scholar 

  29. B. A. Pint, R. G. Brese, and J. R. Keiser, Effect of Pressure on Supercritical CO2 Compatibility of Structural Alloys at 750°C. Materials and Corrosion 68, 2017 (151).

    Article  CAS  Google Scholar 

  30. C. H. Oh, T. Lillo, W. Windes, T. Totemeier, B. Ward, R. Moore, R. Barner, “Development of A Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility,” Idaho National Laboratory Report INL/EXT-06–01271, 2006.

  31. J. Peng, E. Lara-Curzio and D. Shin, “High-throughput thermodynamic screening of carbide/refractory metal cermets for ultra-high temperature applications,” Calphad 66 (2019) UNSP 101631. DOI: https://doi.org/10.1016/j.calphad.2019.101631

  32. K. L. More, P. F. Tortorelli, M. K. Ferber, and J. R. Keiser, "Observations of Accelerated Silicon Carbide Recession by Oxidation at High Water-Vapor Pressures," Journal of the American Ceramic Society 83, 211 83 (2000).

  33. K. A. Terrani, B. A. Pint, C. M. Parish, C. M. Silva, L. L. Snead, and Y. Katoh, Silicon Carbide Oxidation in Steam up to 2 MPa. Journal of the American Ceramic Society 97, 2014 (2331).

    Article  CAS  Google Scholar 

  34. B. A. Pint, R. G. Brese and J. R. Keiser, “The effect of impurities and pressure on oxidation in CO2 at 700°-800°C,” NACE Paper C2018–11199, Houston, TX, presented at NACE Corrosion 2018, Phoenix, AZ, April 2018.

  35. E. A. Gulbransen and K. F. Andrew, Kinetics of the Oxidation of Pure Tungsten from 500° to 1300°C. Journal of the Electrochemical Society 107, 1960 (619).

    Article  Google Scholar 

  36. E. A. Gulbransen, K. F. Andrew, and F. A. Brassart, Oxidation of Molybdenum 550° to 1700°C. Journal of the Electrochemical Society 110, 1963 (952).

    Article  CAS  Google Scholar 

  37. B. A. Pint and J. R. Keiser, (2014) “The Effect of Temperature on the sCO2 Compatibility of Conventional Structural Alloys,” in Proceedings of the 4th International Symposium on Supercritical CO2 Power Cycles, Pittsburgh, PA, September 2014, Paper #61.

  38. L. Ingemarsson, M. Halvarsson, J. Engkvist, T. Jonsson, K. Hellstrom, L. G. Johansson, and J. E. Svensson, Oxidation behavior of a Mo(Si, Al)2-based composite at 300–1000°C. Intermetallics 18, 2010 (633).

    Article  CAS  Google Scholar 

  39. B. Jonsson, Q. Lu, D. Chandrasekaran, R. Berglund, and F. Rave, Oxidation and Creep Limited Lifetime of Kanthal APMT®, a Dispersion Strengthened FeCrAlMo Alloy Designed for Strength and Oxidation Resistance at High Temperatures. Oxidation of Metals 79, 2013 (29).

    Article  Google Scholar 

  40. S. B. Bell, K. A. Kane, C. P. Massey, L. A. Baldesberger, D. Lutz, and B. A. Pint, Strength and rupture geometry of un-irradiated C26M FeCrAl under LOCA burst testing conditions. Journal of Nuclear Materials 557, 2021 153242.

    Article  CAS  Google Scholar 

  41. B. A. Pint, High temperature compatibility of structural alloys with supercritical and subcritical CO2. Interface 30, 2021 (67).

    CAS  Google Scholar 

  42. B. A. Pint and J. R. Keiser, “Exploring Materials Options for Ultra-High Temperature Supercritical CO2 Applications,” in Proceedings of the 7th International Symposium on Supercritical CO2 Power Cycles, San Antonio, TX, February 2022, Paper #39.

  43. B. A. Pint and J. R. Keiser, (2006) “Alloy Selection for High Temperature Heat Exchangers,” NACE Paper 06–469, Houston, TX, presented at NACE Corrosion 2006, San Diego, CA, March 2006.

  44. B. A. Pint, K. L. More, and I. G. Wright, The Use of Two Reactive Elements to Optimize Oxidation Performance of Alumina-Forming Alloys. Materials at High Temperature 20, 2003 (375).

    Article  CAS  Google Scholar 

  45. G. H. Meier, W. C. Coons, and R. A. Perkins, Corrosion of Iron-, Nickel- and Cobalt-Base Alloys in Atmospheres Containing Carbon and Oxygen. Oxidation of Metals 17, 1982 (235).

    Article  CAS  Google Scholar 

  46. T. D. Nguyen, G. D. Scofield, S. Hwang, M. D. Sangid, G. Itskos, M. Caccia, and K. H. Sandhage, Corrosion of a dense, co-continuous SiC/Si composite in CO2 and synthetic air at 750°C. Journal of Materials Research and Technology 15, 2021 (4852).

    Article  CAS  Google Scholar 

  47. J. Jun, K. A. Unocic, M. J. Lance, H. M. Meyer, and B. A. Pint, Compatibility of Alumina-Forming Steel with Flowing PbLi at 500°-650°C. Journal of Nuclear Materials 528, 2020 151847.

    Article  CAS  Google Scholar 

  48. D. Naumenko, B. A. Pint, and W. J. Quadakkers, Current thoughts on reactive element effects in alumina-forming systems - in memory of John Stringer. Oxidation of Metals 86, 2016 (1).

    Article  CAS  Google Scholar 

  49. B. A. Pint, K. A. Terrani M. P. Brady, T. Cheng and J. R. Keiser, "High Temperature Oxidation of Fuel Cladding Candidate Materials in Steam-Hydrogen Environments," Journal of Nuclear Materials 440, 420 (2013).

Download references

Acknowledgements

The authors would like to thank Haynes International (V. Deodeshmukh), Capstone Green Energy Corporation (D. Vicario) and Kanthal (E. Ström) for supplying materials for these experiments. The experimental work was conducted by B. Johnston, T. Lowe and V. Cox. E. Lara-Curzio and R. Pillai provided useful comments on the manuscript. This research was funded by the U.S. Department of Energy’s Office of Fossil Energy and Carbon Management.

Funding

This research was funded by the U.S. Department of Energy’s Office of Fossil Energy and Carbon Management (field work proposal FEAA361).

Author information

Authors and Affiliations

Authors

Contributions

BP conceptualized and designed the experiment. Material preparation, data collection and analysis were performed by BP and JK. The first draft of the manuscript was written by BP and JK commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to B. A. Pint.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Notice

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pint, B.A., Keiser, J.R. Exploring Material Solutions for Supercritical CO2 Applications above 800 °C. Oxid Met 98, 545–559 (2022). https://doi.org/10.1007/s11085-022-10134-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-022-10134-2

Keywords

Navigation