Skip to main content
Log in

Prospects of Using Pharmacologically Active Compounds for the Creation of Antimycobacterial Drugs

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The growth of resistance to antimycobacterial drugs dictates the need to develop new agents with high therapeutic efficacy and low toxicity. The present review analyzes and summarizes literature data over the past decade on the synthesis and study of antimycobacterial agents using both an empirical approach and molecular docking. Pyrimidines, amides, coumarins, chalcones, furans, azomethines, salicylanilides, oxazolidines, nitroimidazoles, benzothiazinones, diarylquinolines, azaindoles, imidazopyridines, benzimidazoles, and riminophenazines, some of which are in various stages of clinical trials, are of most interest to researchers. Special attention is paid to identifying the targets of new compounds and studying their mechanisms of action when creating antimycobacterial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Henneberg, K. Holloway-Kew, and T. Lucas, PLoS One, 16(2), e0243687 (2012); doi: https://doi.org/10.1371/journal.pone.0243687.

    Article  CAS  Google Scholar 

  2. V. N. Zimina, S. Yu. Degtyareva, E. N. Beloborodova, et al., Klin. Mikrobiol. Antimikrob. Khimioter., 19(4), 276 – 282 (2017).

    Google Scholar 

  3. H. Farad and D. Jagdale, World J. Pharm. Res., 9(5), 1581 – 1588 (2020); doi: https://doi.org/10.20959/wjpr20205-17364.

    Article  CAS  Google Scholar 

  4. N. N. Kovganko, I. N. Slabko, and V. N. Kovganko, in: Abstracts of Papers of a Republic Conference with International Participation Dedicated to the 110th Birthday of V. A. Bondarin “Physicochemical Biology as a Basis of Modern Medicine” [in Russian], Minsk (2019), pp. 145 – 146.

  5. S. A. Luzhnova, N. M. Gabitova, A. V. Voronkov, et al., Fundam. Issled., No. 2, Part 11, 2377 – 2380 (2015).

  6. I. V. Petrov, T. Kh. Amirova, L. V. Petrova, et al., Epidemiol. Vaktsinoprofilaktika, 19(3), 89 – 94 (2020); doi: https://doi.org/10.31631/2073-3046-2020-19-3-89-94.

    Article  Google Scholar 

  7. M. A. Samotrueva, A. A. Tsibizova, A. L. Yasenyavkaya, et al., Astrakhan. Med. Zh., 10(1), 12 – 29 (2015).

  8. A. N. Tevyashova, E. N. Olsuf’eva, and M. N. Preobrazhenskaya, Usp. Khim., 84(1), 61 – 97 (2015); doi: https://doi.org/10.1070/RCR4448.

    Article  CAS  Google Scholar 

  9. D. T. Hurst (ed.), Introduction to the Chemistry and Biochemistry of Pyrimidines, Purines and Pteridines, JohnWiley & Sons, New York (1980).

    Google Scholar 

  10. K. Singh, K. Singh, B.Wan, et al., Eur. J. Med. Chem., 46, 2290 (2011); doi: https://doi.org/10.1016/j.ejmech.2011.03.010.

    Article  CAS  PubMed  Google Scholar 

  11. D. N. Lyapustin, E. N. Ulomskii, and V. L. Rusinov, in: Abstracts of Papers of the International Scientific Conference “Current Issues of Organic Chemistry and Biotechnology” [in Russian], Ekaterinburg (2020), pp. 127 – 128.

  12. K. V. Savateev, E. N. Ulomskii, V. V. Fedotov, et al., Bioorg. Khim., 43(4), 402 – 410 (2017); doi: https://doi.org/10.7868/S0132342317040108.

    Article  Google Scholar 

  13. S. B. Patil, Int. J. Pharm. Sci. Res., 9(1), 44 – 52 (2018).

    CAS  Google Scholar 

  14. A. S. Agarkov, G. V. Konorov, A. S. Sapunova, et al., in: Abstracts of Papers of the IInd Scientific Conference “Dynamic Processes in the Chemistry of Organoelement Compounds” [in Russian], Kazan (2020), p. 65.

  15. G. G. Danangulyan, in: Abstracts of Papers of the International Scientific Conference “From Polyethylene Synthesis to Stereodivergence: Development of Chemistry for 100 Years” [in Russian], Perm (2018), pp. 16 – 18.

  16. N. S. Demina, N. A. Rasputin, and G. L. Rusinov, in: Abstracts of Papers of the IVth International Symposium on Medical, Organic and Biological Chemistry and Pharmaceutics [in Russian], Moscow (2018), p. 125.

  17. E. S. Ofitserova, L. N. Alekseeva, A. A. Shklyarenko, and I. P. Yakovlev, Vestn. Smolensk. Gos. Med. Akad., 19(4), 46 – 49 (2020).

    Google Scholar 

  18. K. V. Savateev, S. S. Borisov, E. K. Voinkov, et al., Chim. Techno Acta, 2(2), 129 – 130 (2015); doi: https://doi.org/10.15826/chimtech.2015.2.2.013.

    Article  Google Scholar 

  19. S. Vembu, P. Parasuraman, and M. Gopalakrishnan, J. Pharm. Res., 8(10), 1552 – 1558 (2014).

    Google Scholar 

  20. E. V. Verbitskii, G. L. Rusinov, V. N. Charushin, and O. N. Chupakhin, Izv. Akad. Nauk, Ser. Khim., No. 12, 2172 – 2989 (2019); doi: 10.1007/s11172-019-2686-x.

  21. M. Yu. Yushin, A. G. Tyrkov, L. V. Saroyants, et al., Khim.-farm. Zh., 54(2), 32 – 35 (2020); doi: 10.30906/0023-1134-2020-54-2-32-35; Pharm. Chem. Zh., 54(2), 134 – 137 (2020).

  22. S. A. Luzhnova, A. G. Tyrkov, N. M. Gabitova, and E. A. Yurtaeva, Khim.-farm. Zh., 49(12), 12 – 14 (2015); doi: 10.30906/0023-1134-2015-49-12-12-14; Pharm. Chem. J., 49(12), 810 – 812 (2015).

  23. J. K. Seydel and E. G. Wempe, Int. J. Lepr., 50, 20 – 30 (1982).

    CAS  Google Scholar 

  24. N. Malothu, U. Kulandaivelu, J. Malathi, et al., Chem. Pharm. Bull., 66(10), 923 – 931 (2018); doi: https://doi.org/10.1248/cpb.c17-00999.

    Article  CAS  Google Scholar 

  25. N. Agre, M. Degani, A. Gupta, et al., Arch. Pharm. (Weinheim), 352(9), 1900068 (2019); doi: 10.1002/ardp.201900068.

  26. M. Yu. Krasavin, R. E. Trifonov, et al., RU Pat. 2,705,591, Nov. 11, 2019; Ref. Zh. Khim., 20.03 – 19O.75P (2020).

  27. I. Zadrazilova, S. Pospisilova, M. Masarikova, et al., Eur. J. Pharm. Sci., 77, 197 – 207 (2015); doi: https://doi.org/10.1016/j.ejps.2015.06.009.

    Article  CAS  PubMed  Google Scholar 

  28. I. Zadrazilova, S. Pospisilova, K. Pauk, et al., BioMed Res. Int. (2015); doi: https://doi.org/10.1155/2015/349534.

  29. J. Kos, I. Nevin, M. Soral, et al., Bioorg. Med. Chem., 23(9), 2035 – 2043 (2015); doi: https://doi.org/10.1016/j.bmc.2015.03.018.

    Article  CAS  PubMed  Google Scholar 

  30. N. D. Franz, J. M. Belardinelli, M. A. Kaminski, et al., Bioorg. Med. Chem., 25(14), 3746 – 3755 (2017); doi: https://doi.org/10.1016/j.bmc.2017.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Sh. Ikramova and Kh. M. Komilov, Farm. Vestn. Uzb., No. 2, 55 – 59 (2017).

  32. A. V. Lipeeva, D. O. Zakharov, A. G. Makarov, et al., in: Abstracts of Papers of the XIIth International Scientific-Practical Conference “Chemical Science and Education of Krasnoyarye” [in Russian], Krasnoyarsk (2019), pp. 26 – 31.

  33. D. Srikrishna, C. Godugu, and P. K. Dubey, Mini-Rev. Med. Chem., 18(2), 113 – 141 (2018); doi: https://doi.org/10.2174/1389557516666160801094919.

    Article  CAS  PubMed  Google Scholar 

  34. A. Thakur, R. Singla, and V. Jaitak, Eur. J. Med. Chem., 101, 476 – 495 (2015); doi: https://doi.org/10.1016/j.ejmech.2015.07.010.

    Article  CAS  PubMed  Google Scholar 

  35. H. Li, Y. Yao, and L. Li, J. Pharm. Pharmacol., 69(10), 1253 – 1264 (2017); doi: https://doi.org/10.1111/jphp.12774.

    Article  CAS  Google Scholar 

  36. M. A. Gouda, M. A. Salem, and M. H. Helal, Curr. Bioact. Compd., 16(6), 818 – 836 (2020); doi: https://doi.org/10.2174/1573407215666190405154406.

    Article  CAS  Google Scholar 

  37. G. O. Ismailova, N. M. Yuldashev, Z. D. Uzakbergenova, et al., Sovrem. Probl. Nauki Obraz., No. 5, 674 (2013).

    Google Scholar 

  38. O. M. Tsivileva, O. V. Koftin, A. A. Anis’kov, and D. N. Ibragimova, Usp. Med. Mikol., 20, 546 – 552 (2019).

    Google Scholar 

  39. G. Kirsch, A. B. Abdelwahab, and P. Chaimbault, Molecules, 21(10), 1322 (2016); doi: https://doi.org/10.3390/molecules21101322.

    Article  CAS  PubMed Central  Google Scholar 

  40. C. Dong-Wei, Z. Yuan, D. Xiao-Yi, et al., Crit. Rev. Anal. Chem., 51(6), 503 – 526 (2021); doi: https://doi.org/10.1080/10408347.2020.1750338.

    Article  CAS  PubMed  Google Scholar 

  41. Y.Wu, J. Xu, Y. Liu, et al., Front. Oncol., 10, 1 – 10 (2020); doi: https://doi.org/10.3389/fonc.2020.592853.

    Article  Google Scholar 

  42. F. V. Antipin and N. N. Mochul’skaya, in: Abstracts of Papers of “Modern Synthetic Methodologies for Creating Medicines and Functional Materials (MOSM 2018)” [in Russian], Ekaterinburg (2019), p. 318.

  43. D. S. Reddy, M. Kongot, S. P. Netalkar, et al., Eur. J. Med. Chem., 150, 864 – 875 (2018); doi: https://doi.org/10.1016/j.ejmech.2018.03.042.

    Article  CAS  PubMed  Google Scholar 

  44. B. M. Chougala, S. Samundeeswari, M. Holiyachi, et al., Eur. J. Med. Chem., 143, 1744 – 1756 (2018); 125, 101 – 116 (2017); doi: 10.1016/j.ejmech.2016.09.021.

  45. S. N. Mangasuli, K. M. Hosamani, H. C. Devarajegowda, et al., Eur. J. Med. Chem., 146, 747 – 756 (2018); doi: https://doi.org/10.1016/j.ejmech.2018.01.025.

    Article  CAS  PubMed  Google Scholar 

  46. R. A. Muzychkina, N. V. Kurbatova, and D. Yu. Korulkin, Vestn. Kaz. Nats. Univ., Ser. Biol., 69(4), 22 – 31 (2016).

  47. C. Zhuang, W. Zhang, C. Sheng, et al., Chem. Rev., 117(12), 7762 – 7810 (2017); doi: https://doi.org/10.1021/acs.chemrev.7b00020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. R. Irfan, S. Mousavi, M. Alazmi, and R. S. Z. Saleem, Molecules, 25(22), 5381 (2020); doi: https://doi.org/10.3390/molecules25225381.

    Article  CAS  PubMed Central  Google Scholar 

  49. A. Leon-Gonzalez, N. Acero, D. Munoz-Mingarro, et al., Curr. Med. Chem., 22(30), 3407 – 3425 (2015); doi: https://doi.org/10.2174/0929867322666150729114829.

    Article  CAS  PubMed  Google Scholar 

  50. C.-W. Phan, S. Vikineswary,W.-K. Yong, et al., Nat. Prod. Res., 32(10), 1229 – 1233 (2018); doi: https://doi.org/10.1080/14786419.2017.1331226.

    Article  CAS  PubMed  Google Scholar 

  51. M. Kucerova-Chlupacova, J. Kunes, V. Buchta, et al., Molecules, 20(1), 1104 – 1117 (2015); doi: https://doi.org/10.3390/molecules20011104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. T. L. B. Ventura, S. D. Calixto, B. de Azevedo Abrahim-Vieira, et al., Molecules, 20(5), 8072 – 8093 (2015); doi: https://doi.org/10.3390/molecules20058072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. M. Alizadeh, M. Jalal, K. Hamed, et al., J. Inflammation Res., 13, 451 (2020).

    Article  CAS  Google Scholar 

  54. F. Gao, H. Yang, T. Lu, et al., Eur. J. Med. Chem., 159, 277 – 281 (2018); doi: https://doi.org/10.1016/j.ejmech.2018.09.049.

    Article  CAS  PubMed  Google Scholar 

  55. L. R. Chiarelli, M. Mori, G. Beretta, et al., J. Enzyme Inhib. Med. Chem., 34(1), 823 – 828 (2019); doi: https://doi.org/10.1080/14756366.2019.1589462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. D. Szulczyk, A. Bielenica, P. Roszkowski, et al., Molecules, 26(2), 323 (2021); doi: https://doi.org/10.3390/molecules26020323.

    Article  CAS  PubMed Central  Google Scholar 

  57. S. S. Chirke, J. S. Krishna, B. B. Rhathod, et al., Chemistry-Select, 2(24), 7309 – 7318 (2017); doi:https://doi.org/10.1002/slct.201701377.

    Article  CAS  Google Scholar 

  58. N. H. Zuma, F. J. Smit, R. Seldon, et al., Bioorg. Chem., 96, 103587 (2020); doi: https://doi.org/10.1016/j.bioorg.2020.103587.

    Article  CAS  PubMed  Google Scholar 

  59. M. A. Altamimi, A. Hussain, S. Alshehri, et al., Processes, 8(11), 1476 (2020); doi: https://doi.org/10.3390/pr8111476.

    Article  CAS  Google Scholar 

  60. E. T. Da Silva, A. S. Araujo, A. M. Moraes, et al., Sci. Pharm., 84(3), 467 – 483 (2016); doi: https://doi.org/10.3390/scipharm84030467.

    Article  CAS  Google Scholar 

  61. M. S. Hossain, S. Sarker, A. S. M. E. Shaheed, et al., Chem. Biomol. Eng., 2(1), 41 – 50 (2017); doi: https://doi.org/10.11648/j.cbe.20170201.16.

    Article  Google Scholar 

  62. N. Joy and B. Mathew, Anti-Infect. Agents, 13(1), 60 – 64 (2015); doi: https://doi.org/10.2174/2211352512666140905232639.

    Article  CAS  Google Scholar 

  63. J. N. Copp, D. Pletzer, A. S. Brown, et al., mBio, 11(5), e02068 – 20 (2020); doi: 10.1128/mBio.02068 – 20.

  64. R. Domalaon, O. Okunnu, G. G. Zhanel, and F. Schweizer, J. Antibiot., 72(8), 605 – 616 (2019); doi: https://doi.org/10.1038/s41429-019-0186-8.

    Article  CAS  Google Scholar 

  65. G. Paraskevopoulos, S. Monteiro, R. Vosatka, et al., Bioorg. Med. Chem., 25(4), 1524 – 1532 (2017); doi: https://doi.org/10.1016/j.bmc.2017.01.016.

  66. S. R. Tetali, E. Kunapaeddi, R. P. Mailavaram, et al., Tuberculosis, 125, 101989 (2020); doi: https://doi.org/10.1016/j.tube.2020.101989.

    Article  CAS  PubMed  Google Scholar 

  67. A. A. Lardizabal, A. N. Khan, S. B. Morris, et al., Morb. Mortal Wkly. Rep., 67(35), 996 – 997 (2018); doi: https://doi.org/10.15585/mmwr.mm6735a6.

    Article  Google Scholar 

  68. T. Umumararungu, M. J. Mukazayire, M. Mpenda, et al., Indian J. Tuberculosis, 67, 539 – 559 (2020); doi: https://doi.org/10.1016/j.ijtb.2020.07.017.

    Article  Google Scholar 

  69. A. Bahuguna and D. S. Rawat, Med. Res. Rev., 40(1), 263 – 292 (2019); doi: https://doi.org/10.1002/med.21602.

    Article  PubMed  Google Scholar 

  70. S. Kang, Y. M. Kim, R. Y. Kim, et al., Eur. J. Med. Chem., 125, 807 – 815 (2017); doi: https://doi.org/10.1016/j.ejmech.2016.09.082.

    Article  CAS  PubMed  Google Scholar 

  71. M. V. Bvumbi, ChemMedChem, 15, 2207 – 2219 (2020); doi: https://doi.org/10.1002/cmdc.202000580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. A. Mafukidze, E. Harausz, and J. Furin, Expert Rev. Clin. Pharmacol., 9(10), 1331 – 1340 (2016); doi: https://doi.org/10.1080/17512433.2016.1208562.

    Article  CAS  PubMed  Google Scholar 

  73. R. V. Nugraha, V. Yunivita, P. Santoso, et al., Sci. Pharm., 89, 19 (2021); doi: https://doi.org/10.3390/scipharm89020019.

    Article  CAS  Google Scholar 

  74. M. V. Bvumbi, C. van der Westhuyzen, E. M. Mmutlane, and A. Ngwane, Molecules, 26, 4200 (2021); doi: https://doi.org/10.3390/molecules26144200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. K. T. Angula, L. J. Legoabe, and R. M. Beteck, Pharmaceuticals, 14, 461 (2021); doi: https://doi.org/10.3390/ph14050461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. H. Farad and D. Jagdale, World J. Pharm. Res., 9(5), 1581 – 1588 (2020); doi: https://doi.org/10.20959/wjpr20205-17364.

    Article  CAS  Google Scholar 

  77. M. E. D. Sauer, H. Salomao, G. B. Ramos, et al., Clin. Dermatol., 33(1), 99 – 107 (2015); doi: https://doi.org/10.1016/j.clindermatol.2014.10.001.

    Article  PubMed  Google Scholar 

  78. P. F. Dalberto, E. V. de Souza, B. L. Abbadi, et al., Front. Chem., 8, 586294 (2020); doi: https://doi.org/10.3389/fchem.2020.586294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. S. K. Desai, D. Mondal, and S. Bera, Sci. Rep., 11, 8331 (2021); doi: https://doi.org/10.1038/s41598-021-86767-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zukhairaeva.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 55, No. 10, pp. 48 – 54, October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrapova, A.V., Saroyants, L.V., Yushin, M.Y. et al. Prospects of Using Pharmacologically Active Compounds for the Creation of Antimycobacterial Drugs. Pharm Chem J 55, 1108–1114 (2022). https://doi.org/10.1007/s11094-021-02544-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02544-4

Keywords

Navigation