Skip to main content
Log in

Morita Baylis Hillman Adduct Serves as Ligand in the Synthesis of Transition Metal Complexes Exhibiting Antibacterial Activity

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

In the present work, Morita—Baylis–Hillman (MBH) adduct ligand 3 was prepared under MBH reaction conditions. The compound was purified by chromatographic techniques and structurally confirmed by methods of spectral analysis. Ligand 3 was separately treated with various salts of transition metals (Mn, Cu, Ce and Lu) under basic conditions with and reflux and stirring. This treatment yielded complexes 5–8, the molecular and structural formulas of which were established by spectral and elemental analysis. Then, complexes 5–8 were checked for their antibacterial potential against four strains (E. coli, S. aureus, P. mirabilis, and P. aeruginosa). Almost all compounds exhibited good activity except Mn and Lu complexes which were inactive against S. aureus and P. aeruginosa, respectively. Cerium complex showed moderate antibacterial activity against all selected strains. Among all, Cu complex was fund to be the most active one against the selected bacterial strains. This study demonstrated the first example of using the MBH adduct as ligand for the formation of complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.

Similar content being viewed by others

References

  1. P. H. Paioti, and F. Coelho, Tetrahedron Lett., 52(46), 6180 – 6184 (2011).

    Article  CAS  Google Scholar 

  2. S. R. Reddy, S. T. Das, and T. Punniyamurthy, Tetrahedron Lett., 45(18), 3561 – 3564 (2004).

    Article  CAS  Google Scholar 

  3. Y. Zheng, X. Li, C. Ren, et al., J. Org. Chem., 77(22), 10353 – 10361 (2012).

    Article  CAS  Google Scholar 

  4. S. Bhowmik and S. Batra, Curr. Org. Chem., 18(24), 3078 – 3119 (2014).

    Article  CAS  Google Scholar 

  5. H. H. Kuan, R. J. Reddy, and K. Chen, Tetrahedron, 66(52), 9875 – 9879 (2010).

    Article  CAS  Google Scholar 

  6. A. K. Pandey, S. H. Han, N. K. Mishra, et al., ACS Catalysis, 8(1), 742 – 746 (2017).

    Article  Google Scholar 

  7. N. M. Aljamali and N. S. Salih, Int. Technol. Innov. Res. J., 1(1), 1 – 8 (2015).

    Google Scholar 

  8. S. K. Arupula, S. Guin, A. Yadav, et al., J. Org. Chem., 83(5), 2660 – 2675 (2018).

    Article  CAS  Google Scholar 

  9. W. Amaranth, M. Benassi, R. N. Pascoal, et al., Tetrahedron, 66(24), 4370 – 4376 (2010).

    Article  Google Scholar 

  10. H. Elleuch, W. Mihoubi, M. Mihoubi, et al., Bioorg. Chem., 78, 24 – 28 (2018).

    Article  CAS  Google Scholar 

  11. J. Lasri and A. M. J. Charmier, J. Org. Chem., 72(21), 7550 – 7555 (2007).

    Google Scholar 

  12. C. G. Lima-Junior and M. L. Vasconcellos, Bioorg. Med. Chem., 20(13), 3954 – 3971 (2012).

    Article  CAS  Google Scholar 

  13. J. K. Ekegren, P. Roth, K. Källström, et al., Org. Biomol. Chem., 1(2), 358 – 366 (2003).

    Article  CAS  Google Scholar 

  14. J. Devi and N. Batra, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 135, 710 – 719 (2015).

  15. E. G. Deze, S. K. Papageorgiou, E. P. Favvas, and F. K. Katsaros, Chem. Eng. J., 209, 537 – 546 (2012).

    Article  CAS  Google Scholar 

  16. S. R. Annapure, R. A. Waghmare, S. D. Rathod, and N. P. Adlinge, Asian J. Res. Chem., 10(4), 541 – 545 (2017).

    Article  Google Scholar 

  17. N. R. Barboza, M. M. Morais, P. S. Queiroz, et al., Frontiers in Microbiol., 8, 1946 (2017).

    Article  Google Scholar 

  18. T. Mangamamba, M. C. Ganorkar, G. Swarnabala, Int. J. Inorg. Chem., 2014, 1 (2014).

    Article  Google Scholar 

  19. A. Rodrìguez, J. A. Garcìa-Vázquez, A. Sousa-Pedrares, et al., Inorg. Chem. Commun., 6, 619 – 622 (2013).

    Article  Google Scholar 

  20. H. Ullah, A. V. Ferreira, J. A. Bendassolli, et al., Synthesis, 47(1), 113 – 123 (2015).

    CAS  Google Scholar 

  21. E. Labisbal, K. D. Haslow, A. Sousa-Pedrares, et al., Polyhedron, 22(20), 2831 (2003).

    Article  CAS  Google Scholar 

  22. A. N. M. Alaghaz, H. A. Bayoumi, Y. A. Ammar, and S. J. Aldhlmani, Mol. Struct., 1035, 383 – 399 (2013).

    Article  CAS  Google Scholar 

  23. N. Busto, J. Valladolid, C. Aliende, et al., Chem. Asian J., 7(4), 788 – 801 (2012).

    Article  CAS  Google Scholar 

  24. S. Y. Liu, I. D. Hills, and G. C. Fu, Organometallics, 21(21), 4323 – 4325 (2002).

    Article  CAS  Google Scholar 

  25. C. U. Aguoru and G. Audu, Greener J. Biol. Sci., 2(2), 28 (2012).

  26. H. N. Aliyu and U. Sani, Bayero J. Pure Appl. Sci., 4(1), 83 – 87 (2011).

  27. N. Ahmad, B. H. Abbasi, and H. Fazal, Toxicol. Ind. Health, 32(3), 500 – 506 (2016).

    Article  CAS  Google Scholar 

  28. H. Fazal and A. Rauf, Pak. J. Pharm. Sci., 28(6), 2091 – 2094 (2015).

    PubMed  Google Scholar 

  29. H. Fazal, N. Ahmad, B. H. Abbasi, and N. Abbass, Pak. J. Bot., 44(3), 1103 – 1109 (2012).

    Google Scholar 

  30. M. Ikram, G. Jan, S. Dad, et al., Int. J. Phytomed., 5(4), 475 – 478 (2013).

    Google Scholar 

  31. K. B. Rabia, M. Sultan, and H. Zakir, Am. J. Pharm. Tech. Res., 3, 283 (2013).

    Google Scholar 

  32. H. D. Revanasiddappa, H. D. Vijaya, S. L. Kumar, and K. L. Parasad, World J. Chem., 5(1), 18 – 25 (2010).

    CAS  Google Scholar 

  33. M. N. Khan, H. Ullah, S. Hussain, and A. K. Khattak, Pak. J. Pharm. Sci., 31(1), 103 (2018).

    CAS  PubMed  Google Scholar 

  34. S. Nzikayel, I. J. Akpan, and E. C. Adams, Med. Chem. (Los Angeles), 8, 26 – 28 (2018).

    Google Scholar 

  35. A. Sugino, C. L. Peebles, K. N. Kreuzer, and N. R. Cozzarelli, Proc. Natl. Acad. Sci. USA, 74(11), 4767 – 4771 (1977).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to MIU AJK for providing infrastructure and also thankful to PCSIR-Peshawar, Pakistan, for support in carrying out elemental analysis, spectral analysis and bioactivity studies.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Ullah.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishfaq, S., Ullah, H., Rahman, T.U. et al. Morita Baylis Hillman Adduct Serves as Ligand in the Synthesis of Transition Metal Complexes Exhibiting Antibacterial Activity. Pharm Chem J 56, 906–912 (2022). https://doi.org/10.1007/s11094-022-02725-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02725-9

Keywords

Navigation