Skip to main content
Log in

PEPT1 Enhances the Uptake of Gabapentin via Trans-Stimulation of b0,+ Exchange

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aims of this study were (1) to determine whether amino acid and dipeptide loading can improve the effective permeability of gabapentin and (2) to characterize the underlying mechanism that is responsible for this interaction.

Materials and Methods

An in situ single-pass rat intestinal perfusion model was used to assess the effective permeability of gabapentin in rat, in the absence and presence of cellular loading by amino acid and dipeptide mixtures.

Results

Compared to gabapentin alone, cellular loading with amino acid and dipeptide mixtures significantly improved the effective permeability of gabapentin by 46–79% in jejunum and by 67–72% in ileum (p ≤ 0.01). However, coperfusion of glycylsarcosine (i.e., PEPT1 substrate), methionine sulfoximine (i.e., glutamine synthase inhibitor), or lysine and arginine (i.e., b0,+ substrates) with the amino acid and dipeptide mixtures compromised the intestinal uptake of gabapentin.

Conclusions

These findings demonstrate, for the first time, a direct relationship between the PEPT1-mediated uptake of a dipeptide and the trans-stimulated uptake of gabapentin (an amino acid-like drug) through the transport system b0,+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ala:

alanine

arg:

arginine

GABA:

γ-amino butyric acid

gln:

glutamine

glu:

glutamate

GlyGlu:

glycylglutamate

GlyGly:

glycylglycine

GlySar:

glycylsarcosine

GS:

glutamine synthase

leu:

leucine

lys:

lysine

MS:

methionine sulfoximine

P eff :

effective permeability

SLC:

solute carrier family

References

  1. N. S. Gee, J. P. Brown, V. U. K. Dissanayake, J. Offord, R. Thurlow, and G. N.Woodruff. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha-2-delta subunit of a calcium channel. J. Biol. Chem. 271: 5768–5776 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. J. S. Bryans and D. J. Wustrow. 3-Substituted GABA analogs with central nervous system activity: a review. Med. Res. Rev. 19: 149–177 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. M. V. Ameringen, C. Mancini, B. Pipe, and M. Bennett. Antiepileptic drugs in the treatment of anxiety disorders: role in therapy. Drugs 64: 2199–220 (2004).

    Article  PubMed  Google Scholar 

  4. D. M. Treiman. GABAergic mechanisms in epilepsy. Epilepsia 42: 8–12 (2001).

    Article  PubMed  Google Scholar 

  5. T. Z. Su, E. Lunney, G. Campbell, and D. L. Oxender. Transport of gabapentin, a gamma-amino acid drug, by system L alpha-amino acid transporters: a comparative study in astrocytes, synaptosomes and CHO cells. J. Neurochem. 64: 2125–2131 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. M. S. Luer, C. Hamani, M. Dujovny, B. Gidal, M. Cwik, K. Deyo, and J. H. Fischer. Saturable transport of gabapentin at the blood–brain barrier. Neurol. Res. 21: 559–562 (1999).

    PubMed  CAS  Google Scholar 

  7. M. H. Dave, N. Schulz, M. Zecevic, C. A. Wagner, and F. Verrey. Expression of heteromeric amino acid transporters along the murine intestine. J. Physiol. 558: 597–610 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. B. H. Stewart, A. R. Kugler, P. R. Thompson, and H. N. Bockbrader. A saturable transport mechanism in the intestinal absorption of gabapentin is the underlying cause of the lack of proportionality between increasing dose and drug levels in plasma. Pharm. Res. 10: 276–281 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. N. Piyapolrungroj, C. Li, H. Bockbrader, G. Liu, and D. Fleisher. Mucosal uptake of gabapentin (Neurontin) vs. pregabalin in the small intestine. Pharm. Res. 18: 1126–1130 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. N. Jezyk, C. Li, B. H. Stewart, X. Wu, H. N. Bockbrader, and D. Fleisher. Transport of pregabalin in rat intestine and Caco-2 monolayers. Pharm. Res. 16: 519–526 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. C. M. Stevenson, L. L. Radulovic, H. N. Bockbrader, and D. Fleisher. Contrasting nutrient effects on the plasma levels of an amino acid-like antiepileptic agent from jejunal administration in dogs. J. Pharm. Sci. 86: 953–957 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. F. Verrey, E. I. Closs, C. A. Wagner, M. Palacin, H. Endou, and Y. Kanai. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers. Arch. 447: 532–542 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. M. Pineda, E. Fernandez, D. Terrents, R. Estevez, C. Lopez, M. Camps, J. Lloberas, A. Zorzano, and M. Palacin. Identification of a membrane protein, LAT-2, that co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J. Biol. Chem. 274: 19738–19744 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. U. Wenzel, B. Meissner, F. Doring, and H. Daniel. PEPT1-mediated uptake of dipeptides enhances the intestinal absorption of amino acids via transport system b0,+. J. Cell. Physiol. 186: 251–259 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Kanai and M. A. Hediger. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers. Arch. 447: 469–479 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. S. A. Adibi. The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113:332–340 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. I. Komiya, J. Y. Park, A. Kamani, N. F. H. Ho, and W. I. Higuchi. Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steriods as model solutes. Int. J. Pharm. 4:249–262 (1980).

    Article  CAS  Google Scholar 

  18. H. Lu, H. J. Thomas, and D. Fleisher. Influence of D-glucose-induced water absorption on rat jejunal uptake of two passively absorbed drugs. J. Pharm. Sci. 81:21–25 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. A. Howard, R. A. Goodlad, J. R. F. Walters, D. Ford, and B. Hirst. Increased expression of specific intestinal amino acid and peptide transporter mRNA in rats fed by TPN is reversed by GLP-2. J. Nutr. 134:2957–2964 (2004).

    PubMed  CAS  Google Scholar 

  20. C. Gamboa and A. Ortega. Insulin-like growth factor-1 increases activity and surface levels of the GLAST subtype of glutamate transporter. Neurochem Int 40: 397–403 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. F. Gouyon, L. Caillaud, V. Carrière, C. Klein, V. Dalet, D. Citadelle, G. L. Kellett, B. Thorens, A. Leturque, and E. B. Laroche. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice. J. Physiol. 552:823–832 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. R. A. Ronzio, W. B. Rowe, and A. Meister. Studies on the mechanism of inhibition of glutamine synthetase by methionine sulfoximine. Biochemistry 8:1066–1075 (1969).

    Article  PubMed  CAS  Google Scholar 

  23. V. DeMarco, K. Dyess, D. Strauss, C. M. West, and J. Neu. Inhibition of glutamine synthetase decreases proliferation of cultured rat intestinal epithelial cells. J. Nutr. 129:57–62 (1999).

    PubMed  CAS  Google Scholar 

  24. K. Mizoguchi, S. Cha, A. Chairoungdua, D. K. Kim, Y. Shigeta, H. Matsuo, J. Fukushima, Y. Awa, K. Akakura, T. Goya, H. Ito, H. Endou, and Y. Kanai. Human cystinuria-related transporter: localization and functional characterization. Kidney Int. 59:1821–1833 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. B. E. Gidal, M. M. Maly, J. Budde, G. L. Lensmeyer, M. E. Pitterle, and J. C. Jones. Effect of a high-protein meal on gabapentin pharmacokinetics. Epilepsy. Res. 23:71–76 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. M. L. Hogerle and D. Winne. Drug absorption by the rat jejunum perfused in situ. Dissociation from the pH-partition theory and role of microclimate-pH and unstirred layer. Naunyn Schmiedebergs Arch. Pharmacol. 322:249–255 (1983).

    Article  PubMed  CAS  Google Scholar 

  27. Y. Shiau, P. Fernandez, M. J. Jackson, and S. McMonagle. Mechanisms maintaining a low pH microclimate in the intestine. Am. J. Physiol. 248:G608–G617 (1985).

    PubMed  CAS  Google Scholar 

  28. L. Salphati, K. Childers, L. Pan, K. Tsutsui, and L. Takahashi. Evaluation of single-pass intestinal-perfusion method in rat for the prediction of absorption in man. J Pharm Pharmacol 53: 1007–1013 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. R. Hakkak, M. J. Ronis, and T. M. Badger. Effects of enteral nutrition and ethanol on cytochrome P450 distribution in small intestine of male rats. Gastroenterology 104:1611–1618 (1993).

    PubMed  CAS  Google Scholar 

  30. Q. Y. Zhang, J. Wikoff, D. Dunbar, and L. Kaminsk. Characterization of rat small intestinal cytochrome P450 composition and inducibility. Drug Metab. Dispos. 24: 322–328 (1996).

    PubMed  CAS  Google Scholar 

  31. L. K. Munck and B. G. Munck. Variation in amino acid transport along the rabbit small intestine. Mutual jejunal carriers of leucine and lysine. Biochim. Biophys. Acta. 1116:83–90 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. T. Terada, Y. Shimada, X. Pan, K. Kishimoto, T. Sakurai, R. Doi, H. Onodera, T. Katsura, M. Imamura, and K. I. Inui. Expression profiles of various transporters for oligopeptides, amino acids and organic ions along the human digestive tract. Biochem Pharmacol 70: 1756–1763 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. G. L. Amidon, P. J. Sinko, and D. Fleisher. Estimating human oral fraction dose absorbed: a correlation using rat intestinal membrane permeability for passive and carrier mediated compounds. Pharm. Res. 5:651–654 (1988).

    Article  PubMed  CAS  Google Scholar 

  34. U. Fagerholm, M. Johansson, and H. Lennernas. Comparison between permeability coefficients in rat and human jejunum. Pharm. Res. 13:1336–1342 (1996).

    Article  PubMed  CAS  Google Scholar 

  35. W. L. Chiou and A. Barve. Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharm. Res. 15:1792–1795 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. H. J. Steinhardt and S. A. Adibi. Kinetics and characteristics of absorption from an equimolar mixture of 12 glycyl-dipeptides in human jejunum. Gastroenterology 90:577–582 (1986).

    PubMed  CAS  Google Scholar 

  37. Y. S. Kim, W. Birthwhistle, and Y. W. Kim. Peptide hydrolases in the brush border and soluble fractions of small intestinal mucosa of rat and man. J. Clin. Invest. 51: 1419–1430 (1972).

    Article  PubMed  CAS  Google Scholar 

  38. S. A. Adibi and D. W. Mercer. Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. J. Clin. Invest. 52:1586–1594 (1973).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant R01 GM035498 (D.E.S.) from the National Institutes of Health. Theresa V. Nguyen was supported by an American Foundation for Pharmaceutical Education Fellowship, a Pharmacological Sciences Training Program from the National Institutes of Health (Grant T32 GM007767), and by the College of Pharmacy (Pfizer and Lyons Fellowships).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa V. Nguyen.

Additional information

This article is posthumous for David Fleisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T.V., Smith, D.E. & Fleisher, D. PEPT1 Enhances the Uptake of Gabapentin via Trans-Stimulation of b0,+ Exchange. Pharm Res 24, 353–360 (2007). https://doi.org/10.1007/s11095-006-9155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9155-6

Key words

Navigation