Skip to main content
Log in

Characterization of Polyion Complex Micelles Designed to Address the Challenges of Oligonucleotide Delivery

  •  
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To optimize oligonucleotide (ODN)-based polyion complex micelles (PICMs) by studying the effects of polymer composition and length on their properties.

Methods

Atom transfer radical polymerization was used to synthesize copolymers with increasing hydrophilic nonionic and cationic block lengths. PICMs were prepared by mixing the copolymers and ODN at various nitrogen-to-phosphate (N/P) ratios and characterized by gel electrophoresis and dynamic light scattering. The stability of the complexes towards dissociation was tested using a competitive assay with heparin. Finally, protection of the incorporated ODN against DNAse I degradation was evaluated.

Results

A library of copolymers composed of poly(ethylene glycol) (PEG) and poly(aminoethyl methacrylate) (PAEMA) and/or poly((dimethylamino)ethylmethacrylate) (PDMAEMA) was synthesized. All polymers efficiently interacted with the ODN at N/P ratios approaching 1.5. Narrowly distributed but easily dissociable PICMs were obtained using PEG 5000 and short DMAEMA chains. Shortening the PEG block to 2000, increasing the number of cationic units and using AEMA produced more stable complexes but at the cost of colloidal properties. All polymers were able to protect the ODN from nuclease degradation.

Conclusions

PEG 3000-based PICMs possess good colloidal properties, intermediate stability towards dissociation and adjustable buffering capacity, making them potentially useful for the delivery of nucleic acid drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AEMA:

2-aminoethyl methacrylate

AEMABoc:

2-(N-(tert-butoxycarbonyl)amino)ethyl methacrylate

ATRP:

atom transfer radical polymerization

β :

buffering capacity

DLS:

dynamic light scattering

DMAEMA:

2-(N,N-dimethylamino)ethyl methacrylate

EDTA:

ethylenediaminetetraacetic acid

EO:

ethylene oxide

EtBr:

ethidium bromide

GPC:

gel permeation chromatography

1H NMR:

proton nuclear magnetic resonance

M n :

number-average molecular weight

M w :

weight-average molecular weight

MW:

molecular weight

N/P:

nitrogen-to-phosphate

ODN:

oligodeoxyribonucleotide

PEG:

poly(ethylene glycol)

PEI:

poly(ethyleneimine)

PI:

polydispersity index

PICMs:

polyion complex micelles

siRNA:

small interfering RNA

SD:

standard deviation

THF:

tetrahydrofuran

References

  1. B. A. Bunnell, and R. A. Morgan. Gene therapy for infectious diseases. Clin. Microbiol. Rev. 11:42–56 (1998).

    PubMed  CAS  Google Scholar 

  2. I. A. McNeish, S. J. Bell, and N. R. Lemoine. Gene therapy progress and prospects: cancer gene therapy using tumour suppressor genes. Gene Ther. 11:497–503 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. J. C. T. van Deutekom, and G. J. B. van Ommen. Advances in Duchenne muscular dystrophy gene therapy. Nat. Rev. Genet. 4:774–783 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. S. Ferrari, D. M. Geddes, and E. W. F. W. Alton. Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Adv. Drug Deliv. Rev. 54:1373–1393 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. S. Agrawal, J. Temsamani, and J.Y. Tang. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc. Natl. Acad. Sci. U. S. A. 88:7595–7599 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. E. Wickstrom. Oligodeoxynucleotide stability in subcellular extracts and culture media. J. Biochem. Biophys. Methods. 13:97–102 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. A. Rifai, W. Brysch, K. Fadden, J. Clark, and K. H. Schlingensiepen. Clearance kinetics, biodistribution, and organ saturability of phosphorothioate oligodeoxynucleotides in mice. Am. J. Pathol. 149:717–725 (1996).

    PubMed  CAS  Google Scholar 

  8. M. D. Hughes, M. Husssain, Q. Nawaz, P. Sayyed, and S. Akhtar. The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discov. Today. 6:303–315 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. J. Kurreck. Antisense tchnologies. Improvement through novel chemical modifications. Eur. J. Biochem. 270:1628–1644 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. S. C. De Smedt, J. Demeester, and W. E. Hennink. Cationic polymer based gene delivery systems. Pharm. Res. 17:113–126 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. E. Mastrobattista, M. A. E. M. van der Aa, W. E. Hennink, and D. J. A. Crommelin. Artificial viruses: a nanotechnological approach to gene delivery. Nat. Rev. Drug Discov. 5:115–121 (2006).

    Article  PubMed  Google Scholar 

  12. D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4:581–593 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. D. Putnam. Polymers for gene delivery across length scales. Nat. Mater. 5:439–451 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. A. V. Kabanov, S. V. Vinogradov, Y. G. Suzdaltseva, and V. Y. Alakhov. Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjugate Chem. 6:639–643 (1995).

    Article  CAS  Google Scholar 

  15. K. Kataoka, H. Togawa, A. Harada, K. Yasugi, T. Matsumoto, and S. Katayose. Spontaneous formation of polyion complexe micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules. 29:8556–8557 (1996).

    Article  CAS  Google Scholar 

  16. C. Plank, K. Mechtler, F. C. Szoka, and E. Wagner. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum. Gene Ther. 7:1437–1446 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. M. Ogris, S. Brunner, S. Schuller, R. Kircheis, and E. Wagner. PEGylated DNA/transferrin–PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6:595–605 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. H. Petersen, P. M. Fechner, A. L. Martin, K. Kunath, S. Stolnik, C. J. Roberts, D. Fischer, M. C. Davies, and T. Kissel. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjugate Chem. 13:845–854 (2002).

    Article  CAS  Google Scholar 

  19. C. Brus, H. Petersen, A. Aigner, F. Czubayko, and T. Kissel. Physicochemical and biological characterization of polyethylenimine-graft-poly(ethylene glycol) block copolymers as a delivery system for oligonucleotides and ribozymes. Bioconjugate Chem. 15:677–684 (2004).

    Article  CAS  Google Scholar 

  20. S. Mao, M. Neu, O. Germershaus, O. Merkel, J. Sitterberg, U. Bakowsky, and T. Kissel. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/siRNA polyplexes. Bioconjugate Chem. 17:1209–1218 (2006).

    Article  CAS  Google Scholar 

  21. S. Sundaram, L. K. Lee, and C. M. Roth. Interplay of polyethyleneimine molecular weight and oligonucleotide backbone chemistry in the dynamics of antisense activity. Nucleic Acids Res. 35:4396–4408 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. S. Sundaram, S. Viriyayuthakorn, and C. M. Roth. Oligonucleotide structure influences the interactions between cationic polymers and oligonucleotides. Biomacromolecules. 6:2961–2968 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. E. Ramsay, and M. Gumbleton. Polylysine and polyornithine gene transfer complexes: A study of complex stability and cellular uptake as a basis for their differential in-vitro transfection efficiency. J. Drug Target. 10:1–9 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. P. van de Wetering, E. E. Moret, N. M. E. Schuurmans-Nieuwenbroek, M. J. van Steenbergen, and W.E. Hennink. Structure–activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjugate Chem. 10:589–597 (1999).

    Article  CAS  Google Scholar 

  25. M. A. Wolfert, P. R. Dash, O. Nazarova, D. Oupicky, L. W. Seymour, S. Smart, J. Strohalm, and K. Ulbrich. Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA. Bioconjugate Chem. 10:993–1004 (1999).

    Article  CAS  Google Scholar 

  26. C. Arigita, N. J. Zuidam, D. J. A. Crommelin, and W. E. Hennink. Association and dissociation characteristics of polymer/DNA complexes used for gene delivery. Pharm Res. 16:1534–1541 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. J. K. W. Lam, Y. Ma, S. P. Armes, A. L. Lewis, T. Baldwin, and S. Stolnik. Phosphorylcholine-polycation diblock copolymers as synthetic vectors for gene delivery. J. Control. Release. 100:293–312 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. M. H. Dufresne, and J. C. Leroux. Study of the micellization behavior of different order amino block copolymers with heparin. Pharm. Res. 21:160–169 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. M. H. Dufresne, M. A. Gauthier, and J. C. Leroux. Thiol-functionalized polymeric micelles: From molecular recognition to improved mucoadhesion. Bioconjugate Chem. 16:1027–1033 (2005).

    Article  CAS  Google Scholar 

  30. W. H. Heath, A. F. Senyurt, J. Layman, and T. E. Long. Charged polymers via controlled radical polymerization and their implications for gene delivery. Macromol. Chem. Phys. 208:1243–1249 (2007).

    Article  CAS  Google Scholar 

  31. M. C. Deshpande, M. C. Garnett, M. Vamvakaki, L. Bailey, S. P. Armes, and S. Stolnik. Influence of polymer architecture on the structure of complexes formed by PEG-tertiary amine methacrylate copolymers and phosphorothioate oligonucleotide. J. Control. Release. 81:185–199 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. M. Ranger, M. C. Jones, M. A. Yessine, and J. C. Leroux. From well-defined diblock copolymers prepared by a versatile atom transfer radical polymerization method to supramolecular assemblies. J. Polym. Sci., A, Polym. Chem. 39:3861–3874 (2001).

    Article  CAS  Google Scholar 

  33. M. A. Yessine, C. Meier, H. U. Petereit, and J. C. Leroux. On the role of methacrylic acid copolymers in the intracellular delivery of antisense oligonucleotides. Eur. J. Pharm. Biopharm. 63:1–10 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. M. A. Yessine, M. H. Dufresne, C. Meier, H. U. Petereit, and J. C. Leroux. Proton-actuated membrane-destabilizing polyion complex micelles. Bioconjugate Chem. 18:1010–1014 (2007).

    Article  CAS  Google Scholar 

  35. S. Lenoir, C. Pagnoulle, C. Detrembleur, M. Galleni, and R. Jerome. New antibacterial cationic surfactants prepared by atom transfer radical polymerization. J. Polym. Sci., A, Polym. Chem. 44:1214–1224 (2006).

    Article  CAS  Google Scholar 

  36. U. Rungsardthong, T. Ehtezazi, L. Bailey, S. P. Armes, M. C. Garnett, and S. Stolnik. Effect of polymer ionization on the interaction with DNA in nonviral gene delivery systems. Biomacromolecules. 4:683–690 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. H. Dautzenberg, C. Konak, T. Reschel, A. Zintchenko, and K. Ulbrich. Cationic graft copolymers as carriers for delivery of antisense-oligonucleotides. Macromol. Biosci. 3:425–435 (2003).

    Article  CAS  Google Scholar 

  38. M. Glodde, S. R. Sirsi, and G. J. Lutz. Physiochemical properties of low and high molecular weight poly(ethylene glycol)-grafted poly(ethylene imine) copolymers and their complexes with oligonucleotides. Biomacromolecules. 7:347–356 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. A. Harada, H. Togawa, and K. Kataoka. Physicochemical properties and nuclease resistance of antisense-oligonucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol)–poly(l-lysine) block copolymers. Eur. J. Pharm. Sci. 13:35–42 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. C. W. Scales, F. Q. Huang, N. Li, Y. A. Vasilieva, J. Ray, A. J. Convertine, and C. L. McCormick. Corona-stabilized interpolyelectrolyte complexes of siRNA with nonimmunogenic, hydrophilic/cationic block copolymers prepared by aqueous RAFT polymerization. Macromolecules. 39:6871–6881 (2006).

    Article  CAS  Google Scholar 

  41. J. Jin, J. C. Achenbach, S. P. Zhu, and Y. F. Li. Complexation of well-controlled low-molecular weight polyelectrolytes with antisense oligonucleotides. Colloid Polym. Sci. 283:1197–1205 (2005).

    Article  CAS  Google Scholar 

  42. M. Elsabahy, M. Zhang, S. M. Gan, K. C. Waldron, and J. C. Leroux. Synthesis and enzymatic stability of PEGylated oligonucleotide duplexes and their self-assemblies with polyamidoamine dendrimers. Soft Matter. 4:294–302 (2008).

    Article  CAS  Google Scholar 

  43. G. Gaucher, M. H. Dufresne, V. P. Sant, N. Kang, D. Maysinger, and J. C. Leroux. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release. 109:169–188 (2005).

    Article  PubMed  CAS  Google Scholar 

  44. O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 92:7297–7301 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Research Chair Program. M.H.D. further acknowledges graduate research scholarships from NSERC and Fonds Québécois de la Recherche sur la Nature et les Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Leroux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufresne, MH., Elsabahy, M. & Leroux, JC. Characterization of Polyion Complex Micelles Designed to Address the Challenges of Oligonucleotide Delivery. Pharm Res 25, 2083–2093 (2008). https://doi.org/10.1007/s11095-008-9591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9591-6

KEY WORDS

Navigation