Skip to main content

Advertisement

Log in

Comparing the Relative Oxidative DNA Damage Caused by Various Arsenic Species by Quantifying Urinary Levels of 8-Hydroxy-2′-Deoxyguanosine with Isotope-Dilution Liquid Chromatography/Mass Spectrometry

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the association between various arsenicals and the potential oxidative stress caused, we examined the urinary levels of 8-hydroxy-2′-deoxyguanosine (8-OH-dGuo), a biomarker of oxidative DNA damage in rats after daily oral administration of arsenic trioxide/arsenite (As2O3), realgar (α-As4S4) and orpiment (As2S3) over 14 days and compared the levels with control rats.

Methods

8-OH-dGuo in urine was quantified with isotope-dilution liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) after sample cleaning with solid phase extraction (SPE). Urinary arsenic concentrations were measured by graphite furnace atomic absorption spectrometry (GFAAS).

Results

All arsenicals caused elevated urinary 8-OH-dGuo excretion in rats from day 1 after oral administration (p < 0.01 respectively). There were significant correlations between urinary 8-OH-dGuo and urinary arsenic levels (slope = 0.8164, 0.5801, 0.6582; r 2 = 0.5946, 0.7883, 0.8426 for arsenite, realgar and orpiment-treated group respectively, p < 0.001). This illustrates that urinary 8-OH-dGuo level could be a valid biomarker for detecting the extent of arsenic exposure. Arsenite was found to cause significantly higher urinary 8-OH-dGuo levels than both realgar and orpiment (p < 0.01) even after creatinine and dose adjustments.

Conclusions

Arsenite could cause more oxidative DNA damage than both realgar and orpiment and may be more genotoxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. L. Shi, X. L. Shi, and K. J. Liu. Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem. 255:67–78 (2004). doi:10.1023/B:MCBI.0000007262.26044.e8.

    Article  PubMed  CAS  Google Scholar 

  2. C. S. Huang, Q. D. Ke, M. Costa, and X. L. Shi. Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem. 255:57–66 (2004). doi:10.1023/B:MCBI.0000007261.04684.78.

    Article  PubMed  CAS  Google Scholar 

  3. S. Waxman, and K. C. Anderson. History of the development of arsenic derivatives in cancer therapy. Oncologist. 6(Suppl. 2):3–10 (2001). doi:10.1634/theoncologist.6-suppl_2–3.

    Article  PubMed  CAS  Google Scholar 

  4. H. D. Sun, Y. S. Li, L. Ma, X. C. Hu, and T. D. Zhang. Treatment of acute promyelocytic leukemia by Ailing-1 therapy. Chin J Intergra Chin Trad Med West Med. 12:170–171 (1992).

    Google Scholar 

  5. P. Zhang, S. Y. Wang, L. H. Lu, F. T. Shi, F. Q. Qiu, L. J. Hong, X. Y. Han, H. F. Yang, Y. C. Song, Y. P. Liu, J. Zhou, and Z. J. King. Arsenic trioxide-treated 72 cases of acute promyelocytic leukemia. Chin J Hematol. 17:58–62 (1996).

    Google Scholar 

  6. D. P. Lu, J. Y. Qiu, B. Jiang, Q. Wang, K. Y. Liu, Y. R. Liu, and S. S. Chen. Tetra-arsenic tetra-sulfide for the treatment of acute promyelocytic leukemia: a pilot report. Blood. 99:3136–3143 (2002). doi:10.1182/blood.V99.9.3136.

    Article  PubMed  CAS  Google Scholar 

  7. P. B. Tchounwou, A. K. Patlolla, and J. A. Centeno. Carcinogenic and systemic health effects associated with arsenic exposure - a critical review. Toxicol Pathol. 31:575–588 (2003).

    PubMed  CAS  Google Scholar 

  8. K. T. Kitchin. Recent advances in arsenic carcinogenesis: Modes of action, aninla model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol. 172:249–261 (2001). doi:10.1006/taap.2001.9157.

    Article  PubMed  CAS  Google Scholar 

  9. K. T. Kitchin, and S. Ahmad. Oxidative stress as a possible mode of action for arsenic carcinogenesis. Toxicol Lett. 137:3–13 (2003). doi:10.1016/S0378-4274(02)00376-4.

    Article  PubMed  CAS  Google Scholar 

  10. T. G. Rossman, A. N. Uddin, and F. J. Burns. Evidence that arsenite acts as a carcinogen in skin cancer. Toxicol Appl Pharmacol. 198:394–404 (2004). doi:10.1016/j.taap.2003.10.016.

    Article  PubMed  CAS  Google Scholar 

  11. T. K. Hei, and M. Filipic. Role of oxidative damage in the genotoxicity of arsenic. Free Radic Biol Med. 37:574–581 (2004). doi:10.1016/j.freeradbiomed.2004.02.003.

    Article  PubMed  CAS  Google Scholar 

  12. K. Yamanaka, A. Hasegawa, R. Sawamura, and S. Okada. Dimethylated arsenic induce DNA strand breaks in lung via the production of active oxygen in mice. Biochem Biophys Res Commun. 165:43–50 (1989). doi:10.1016/0006-291X(89)91031-0.

    Article  PubMed  CAS  Google Scholar 

  13. J. Lunec, K. Herbert, S. Blount, H. R. Griffiths, and P. Emery. 8-Hydroxydenoxyguanosine: A marker of oxidative DNA damage in systemic lupus erythematosus. FEBS Lett. 348:131–138 (1994). doi:10.1016/0014-5793(94)00583-4.

    Article  PubMed  CAS  Google Scholar 

  14. K. C. Cheng, D. S. Cahill, H. Kasai, S. Nishinura, and L. A. Loeb. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G → T and A → C substitutions. J Biol Chem. 267:166–172 (1992).

    PubMed  CAS  Google Scholar 

  15. H. Kasai. Analysis of a form of oxidative DNA damage, 8-hydroxy-2’-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 387:147–163 (1997). doi:10.1016/S1383-5742(97)00035-5.

    Article  PubMed  CAS  Google Scholar 

  16. M. C. Peoples, and H. T. Karnes. Recent developments in analytical methodology for 8-hydroxy-2’-deoxyguanosine and related compounds. J Chromatogr B Analyt Technol Biomed Life Sci. 827:5–15 (2005). doi:10.1016/j.jchromb.2005.10.001.

    Article  PubMed  CAS  Google Scholar 

  17. J. Z. Wu, and P. C. Ho. Evaluation of the in vitro activity and in vivo bioavailability of realgar nanoparticles prepared by cryo-grinding. Eur J Pharm Sci. 29:35–44 (2006). doi:10.1016/j.ejps.2006.05.002.

    Article  PubMed  CAS  Google Scholar 

  18. A. Weimann, D. Belling, and H. E. Poulsen. Measurement of 8-oxo-2’-deoxyguanosine and 8-oxo-2’-deoxyadenosine in DNA and human urine by high performance liquid chromatography-electrospray tandem mass spectrometry. Free Radic Biol Med. 30:757–764 (2001). doi:10.1016/S0891-5849(01)00462-2.

    Article  PubMed  CAS  Google Scholar 

  19. M. H. Chan, K. F. Ng, C. C. Szeto, L. C. Lit, K. M. Chow, C. B. Leung, M. W. Suen, P. K. Li, and C. W. Lam. Effect of a compensated Jaffe creatinine method on the estimation of glomerular filtration rate. Ann Clin Biochem. 41:482–484 (2004). doi:10.1258/0004563042466776.

    Article  PubMed  CAS  Google Scholar 

  20. J. Serrano, C. M. Palmeira, K. B. Wallace, and D. W. Kuehl. Determination of 8-hydroxydeoxyguanosine in biological tissue by liquid chromatography/electrospray ionization-mass spectrometry/mass spectrometry. Rapid Commun Mass Spectrom. 10:1789–1791 (1996). doi:10.1002/(SICI)1097-0231(199611)10:14<1789::AID-RCM752>3.0.CO;2–6.

    Article  PubMed  CAS  Google Scholar 

  21. P. G. Pietta, P. Simonetti, C. Gardana, S. Cristoni, L. Bramati, and P. L. Mauri. LC-APCI-MS/MS analysis of urinary 8-hydroxy-2’-deoxyguanosine. J Pharm Biomed Anal. 32:657–661 (2003). doi:10.1016/S0731-7085(03)00172-9.

    Article  PubMed  CAS  Google Scholar 

  22. S. Frelon, T. Douki, J. L. Ravanat, J. P. Pouget, C. Tornabene, and J. Cadet. High-performance liquid chromatography-tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem Res Toxicol. 13:1002–1010 (2000). doi:10.1021/tx000085h.

    Article  PubMed  CAS  Google Scholar 

  23. R. Singh, M. McEwan, J. H. Lamb, R. M. Santella, and P. B. Farmer. An improved liquid chromatography/tandem mass spectrometry method for the determination of 8-oxo-7,8-dihydro-2’-deoxyguanosine in DNA samples using immunoaffinity column purification. Rapid Commun Mass Spectrom. 17:126–134 (2003). doi:10.1002/rcm.883.

    Article  PubMed  CAS  Google Scholar 

  24. P. L. Goering, H. V. Aposhian, M. J. Mass, M. Cebrian, B. D. Beck, and M. P. Waalkes. The enigma of arsenic carcinogenesis: role of metabolism. Toxicol Sci. 49:5–14 (1999). doi:10.1093/toxsci/49.1.5.

    Article  PubMed  CAS  Google Scholar 

  25. A. Basu, J. Mahata, S. Gupta, and A. K. Giri. Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res. 488:171–194 (2001). doi:10.1016/S1383-5742(01)00056-4.

    Article  PubMed  CAS  Google Scholar 

  26. H. Wanibuchi, T. Hori, V. Meenakshi, T. Ichihara, S. Yamanoto, Y. Yano, S. Otani, D. Nakae, Y. Konishi, and S. Fukushima. Promotion of rat hepatocarcinogenesis by demethylarsinic acid: association with elevated ornithine decarboxylase activity and formation of 8-hydroxydeoxyguanosine in the liver. Jpn J Cancer Res. 88:1149–1154 (1997).

    PubMed  CAS  Google Scholar 

  27. M. Vijayaraghavan, H. Wanibuchi, R. Karim, S. Yamamoto, C. Masuda, D. Nakae, Y. Konishi, and S. Fukushima. Dimethylarsinic acid induces 8-hydroxy-2’-deoxyguanosine formation in the kidney of NCI-Black-Reiter rats. Cancer Lett. 165:11–17 (2001). doi:10.1016/S0304-3835(00)00711-4.

    Article  PubMed  CAS  Google Scholar 

  28. A. K. Patlolla, and P. B. Tchounwou. Cytogenetic evaluation of arsenic trioxide toxicity in Sprague-Dawley rats. Mutat Res. 587:126–133 (2005).

    PubMed  CAS  Google Scholar 

  29. M. Dizdaroglu. Facts about the artifacts in the measurement of oxidative DNA base damage by gas chromatography-mass spectrometry. Free Radic Res. 29:551–563 (1998). doi:10.1080/10715769800300591.

    Article  PubMed  CAS  Google Scholar 

  30. C. S. Li, K. Y. Wu, G. P. Chang-Chien, and C. C. Chou. Analysis of oxidative DNA damage 8-hydroxy-2’-deoxyguanosine as a biomarker of exposures to persistent pollutants for marine mammals. Environ Sci Technol. 39:2455–2460 (2005). doi:10.1021/es0487123.

    Article  PubMed  CAS  Google Scholar 

  31. T. Yasuhara, K. Hara, K. D. Sethi, J. C. Morgan, and C. V. Borlongan. Increased 8-OHdG levels in the urine, serum, and substantia nigra of hemiparkinsonian rats. Brain Res. 1133:49–52 (2007). doi:10.1016/j.brainres.2006.11.072.

    Article  PubMed  CAS  Google Scholar 

  32. H. Zhou, A. Kato, T. Miyaji, H. Yasuda, Y. Fujigaki, T. Yamamoto, K. Yonemura, S. Takebayashi, H. Mineta, and A. Hishida. Urinary marker for oxidative stress in kidneys in cisplatin-induced acute renal failure in rats. Nephrol Dial Transplant. 21:616–623 (2006). doi:10.1093/ndt/gfi314.

    Article  PubMed  CAS  Google Scholar 

  33. X. C. Le, W. R. Cullen, and K. J. Reimer. Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. Clin Chem. 40:617–624 (1994).

    PubMed  CAS  Google Scholar 

  34. M. Vahter. Mechanisms of arsenic biotransformation. Toxicology. 27:211–217 (2002). doi:10.1016/S0300-483X(02)00285-8.

    Article  Google Scholar 

  35. Y. H. Hwang, R. L. Bomschein, J. Grote, W. Menrath, and S. Roda. Urinary arsenic excretion as a biomarker of arsenic exposure in children. Arch Environ Health. 52:139–147 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. C. J. Chung, C. J. Huang, Y. S. Pu, C. T. Su, Y. K. Huang, Y. T. Chen, and Y. M. Hsueh. Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area. Toxicol Appl Pharmacol. 226:14–21 (2008). doi:10.1016/j.taap.2007.08.021.

    Article  PubMed  CAS  Google Scholar 

  37. Y. Fujino, X. Guo, J. Liu, I. P. Matthews, T. Kusuda, K. Shirane, K. Wu, H. Kasai, M. Miyatake, K. Tanabe, T. Kusuda, and T. Yoshimura. Japan inner Mongolia arsenic pollution study group. J Exposure Anal Environ Epidemiol. 15:147–152 (2005). doi:10.1038/sj.jea.7500381.

    Article  CAS  Google Scholar 

  38. H. Yamauchi, Y. Aminaka, K. Yoshida, G. Sun, J. Pi, and M. P. Waalkes. Evaluation of DNA damage in patients with arsenic poisoning: urinary 8-hydroxydeoxyguanine. Toxicol Appl Pharnacol. 198:291–296 (2004). doi:10.1016/j.taap.2003.10.021.

    Article  CAS  Google Scholar 

  39. J. Z. Wu, and P. C. Ho. Speciation of inorganic and methylated arsenic compounds by capillary zone electrophoresis with indirect UV detection—Application to the analysis of alkali extracts of As2S2 (realgar) and As2S3 (orpiment). J Chromatogr A. 1026:261–270 (2004). doi:10.1016/j.chroma.2003.10.119.

    Article  PubMed  CAS  Google Scholar 

  40. T. F. William Jr. Enviromental Chemistry of Arsenic. Marcel Dekker, New York, 2002.

    Google Scholar 

  41. E. Agostinelli, and N. Seiler. Non-irradiaiton-derived reactive oxygen species (ROS) and cancer: therapeutic implications. Amino Acids. 31:341–355 (2006). doi:10.1007/s00726-005-0271-8.

    Article  PubMed  CAS  Google Scholar 

  42. S. Gupta, S. Yel, C. Kim, S. Chiplunkar, and S. Gollapudi. Arsenic trioxide induces apoptosis in peripheral blood T lymphocyte subsets by inducing oxidative stress: a role of Bcl-2. Mol Cancer Ther. 2:711–719 (2003).

    PubMed  CAS  Google Scholar 

  43. E. Corsini, L. Asti, B. Viviani, M. Marinovich, and C. L. Galli. Sodium arsenate induces overproduction of interleulin-1 alpha in murine keratinocytes: Role of mitochondria. J. Invest. Dermatol. 113:760–765 (1999). doi:10.1046/j.1523-1747.1999.00748.x.

    Article  PubMed  CAS  Google Scholar 

  44. S. H. Woo, I. C. Park, M. J. Park, H. C. Lee, S. J. Lee, Y. J. Chun, S. H. Lee, S. I. Hong, and C. H. Rhee. Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in HeLa cells. Int J Oncol. 21:57–63 (2002).

    PubMed  CAS  Google Scholar 

  45. J. Dai, R. S. Weinberg, S. Waxman, and Y. Jing. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood. 93:268–277 (1999).

    PubMed  CAS  Google Scholar 

  46. S. Lynn, J. R. Gurr, H. T. Lai, and K. Y. Jan. NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Cir Res. 86:514–519 (2000).

    CAS  Google Scholar 

  47. J. Liu, Y. Lu, Q. Wu, R. A. Goyer, and M. P. Waalkes. Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolite. J Pharmacol Exp Ther. 326:363–369 (2008). doi:10.1124/jpet.108.139543.

    Article  PubMed  CAS  Google Scholar 

  48. J. C. Kirschman, N. M. Brown, and R. H. Coots. Review of investigations of dichloromethane metabolism and subchronic oral toxicity as the basis for the design of chronic oral studies in rats and mice. Fd. Chem. Toxic. 24:943–949 (1986). doi:10.1016/0278-6915(86)90322-4.

    Article  CAS  Google Scholar 

  49. B. Halliwell. Oxidative stress and cancer: have we moved forward. Biochem J. 401:1–11 (2007). doi:10.1042/BJ20061131.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by research grants, R148-000-032-112 and R148-000-097-112 from the National University of Singapore. We thank Dr Xin Liu of the University of Queensland and Dr Haishu Lin of the National University of Singapore for assisting in the animal experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JZ., Ho, P.C. Comparing the Relative Oxidative DNA Damage Caused by Various Arsenic Species by Quantifying Urinary Levels of 8-Hydroxy-2′-Deoxyguanosine with Isotope-Dilution Liquid Chromatography/Mass Spectrometry. Pharm Res 26, 1525–1533 (2009). https://doi.org/10.1007/s11095-009-9865-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9865-7

KEY WORDS

Navigation