Skip to main content
Log in

A Novel Strategy for Pharmaceutical Cocrystal Generation Without Knowledge of Stoichiometric Ratio: Myricetin Cocrystals and a Ternary Phase Diagram

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a streamlined strategy for pharmaceutical cocrystal preparation without knowledge of the stoichiometric ratio by preparing and characterizing the cocrystals of myricetin (MYR) with four cocrystal coformers (CCF).

Methods

An approach based on the phase solubility diagram (PSD) was used for MYR cocrystals preparation and the solid-state properties were characterized by differential scanning calorimetry (DSC), fourier transform-infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The ternary phase diagram (TPD) was constructed by combining the PSD and nuclear magnetic resonance (NMR) data. After that, the TPD was verified by traditional methods. The dissolution of MYR in the four cocrystals and pure MYR within three different media were also evaluated.

Results

A simple research method for MYR cocrystal preparation was obtained as follows: first, the PSD of MYR and CCF was constructed and analyzed; second, by transforming the curve in the PSD to a TPD, a region of pure cocrystals formation was exhibited, and then MYR cocrystals were prepared and identified by DSC, FT-IR, PXRD, and SEM; third, with the composition of the prepared cocrystal from NMR, the TPD of the MYR-CCF-Solvent system was constructed. The powder dissolution data showed that the solubility and dissolution rate of MYR was significantly enhanced by the cocrystals.

Conclusions

A novel strategy for pharmaceutical cocrystals preparation without knowledge of the stoichiometric ratio based on the TPD was established and MYR cocrystals were successfully prepared. The present study provides a systematic approach for pharmaceutical cocrystal generation, which benefits the development and application of cocrystal technology in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

CAF:

Caffeine

CCF:

Cocrystal coformer

CYA:

4-Cyanopyridine

DSC:

Differential scanning calorimetry

FT-IR:

Fourier transform-infrared spectroscopy

HTS:

High throughput screening

INM:

Isonicotinamide

MYR:

Myricetin

NIC:

Nicotinamide

PSD:

Phase solubility diagram

PXRD:

Powder X-ray diffraction

SEM:

Scanning electron microscopy

TPD:

Ternary phase diagram

USP:

United states pharmacopeia

References

  1. Eddleston MD, Sivachelvam S, Jones W. Screening for polymorphs of cocrystals: a case study. Cryst Eng Comm. 2013;15(1):175–81.

    Article  CAS  Google Scholar 

  2. Qiao N, Li MZ, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm. 2011;419(1–2):1–11.

    Article  CAS  PubMed  Google Scholar 

  3. Seliger J, Zagar V. Nuclear quadrupole resonance characterization of carbamazepine cocrystals. Solid State Nucl Magn Reson. 2012;47–48(1):47–52.

    Article  PubMed  Google Scholar 

  4. Yamamoto K, Tsutsumi S, Ikeda Y. Establishment of cocrystal cocktail grinding method for rational screening of pharmaceutical cocrystals. Int J Pharm. 2012;437(1–2):162–71.

    Article  CAS  PubMed  Google Scholar 

  5. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49.

    Article  CAS  PubMed  Google Scholar 

  6. Ong KC, Khoo HE. Biological effects of myricetin. Gen Pharmacol Vasc Sys. 1997;29(2):121–6.

    Article  CAS  Google Scholar 

  7. Scheidt HA, Pampel A, Nissler L, Gebhardt R, Huster D. Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy. Biochim Biophys Acta. 2004;1663(1–2):97–107.

    Article  CAS  PubMed  Google Scholar 

  8. Kim H, Choi J, Jung S. Inclusion complexes of modified cyclodextrins with some flavonols. J Incl Phenom Macrocycl Chem. 2009;64(1–2):43–7.

    Article  CAS  Google Scholar 

  9. Mira L, Fernandez MT, Santos M, Rocha R, Florencio MH, Jennings KR. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res. 2002;36(11):1199–208.

    Article  CAS  PubMed  Google Scholar 

  10. Roedig-Penman A, Gordon MH. Antioxidant properties of myricetin and quercetin in oil and emulsions. J Am Oil Chem Soc. 1998;75(2):169–80.

    Article  CAS  Google Scholar 

  11. Ma ZG, Liu TW. Myricetin facilitates potassium currents and inhibits neuronal activity of PVN neurons. Neurochem Res. 2012;37(7):1450–6.

    Article  CAS  PubMed  Google Scholar 

  12. Yao YS, Lin GB, Xie Y, Ma P, Li GW, Meng QC, et al. Preformulation studies of myricetin: a natural antioxidant flavonoid. Die Pharm. 2014;69(1):19–26.

    CAS  Google Scholar 

  13. Variankaval N, Wenslow R, Murry J, Hartman R, Helmy R, Kwong E, et al. Preparation and solid-state characterization of nonstoichiometric cocrystals off a phosphodiesterase-IV inhibitor annul L-tartaric acid. Cryst Growth Des. 2006;6(3):690–700.

    Article  CAS  Google Scholar 

  14. Leung DH, Lohani S, Ball RG, Canfield N, Wang YL, Rhodes T, et al. Two novel pharmaceutical cocrystals of a development compound–screening, scale-up, and characterization. Cryst Growth Des. 2012;12(3):1254–62.

    Article  CAS  Google Scholar 

  15. Arenas-Garcia JI, Herrera-Ruiz D, Mondragon-Vasquez K, Morales-Rojas H, Hopfl H. Modification of the supramolecular hydrogen-bonding patterns of acetazolamide in the presence of different cocrystal formers: 3:1, 2:1, 1:1, and 1:2 cocrystals from screening with the structural isomers of hydroxybenzoic acids, aminobenzoic acids, hydroxybenzamides, aminobenzamides, nicotinic acids, nicotinamides, and 2,3-dihydroxybenzoic acids. Cryst Growth Des. 2012;12(2):811–24.

    Article  CAS  Google Scholar 

  16. Ando S, Kikuchi J, Fujimura Y, Ida Y, Higashi K, Moribe K, et al. Physicochemical characterization and structural evaluation of a specific 2:1 cocrystal of naproxen-nicotinamide. J Pharm Sci. 2012;101(9):3214–21.

    Article  CAS  PubMed  Google Scholar 

  17. Gangopadhyay P, Radhakrishnan TP. Visualizing supramolecular macrocyclic formations. Mol Cryst Liq Cryst. 2001;369(1):167–219.

    Article  CAS  Google Scholar 

  18. Yenikaya C, Ogretir C. A quantum chemical study on structure of cocrystal of triphenylphosphine oxide and hydroquinone. J Mol Struct THEOCHEM. 2005;731(1–3):1–5.

    Article  CAS  Google Scholar 

  19. Jayasankar A, Reddy LS, Bethune SJ, Rodriguez-Hornedo N. Role of cocrystal and solution chemistry on the formation and stability of cocrystals with different stoichiometry. Cryst Growth Des. 2009;9(2):889–97.

    Article  CAS  Google Scholar 

  20. Chiarella RA, Davey RJ, Peterson ML. Making co-crystals–the utility of ternary phase diagrams. Cryst Growth Des. 2007;7(7):1223–6.

    Article  CAS  Google Scholar 

  21. Rodriguez-Hornedo N, Nehru SJ, Seefeldt KF, Pagan-Torres Y, Falkiewicz C. Reaction crystallization of pharmaceutical molecular complexes. Mol Pharm. 2006;3(3):362–7.

    Article  CAS  PubMed  Google Scholar 

  22. Good DJ, Rodriguez-Hornedo N. Cocrystal eutectic constants and prediction of solubility behavior. Cryst Growth Des. 2010;10(3):1028–32.

    Article  CAS  Google Scholar 

  23. Nehm SJ, Rodriguez-Spong B, Rodriguez-Hornedo N. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst Growth Des. 2006;6(2):592–600.

    Article  CAS  Google Scholar 

  24. Zhang S, Rasmuson AC. Thermodynamics and crystallization of the theophylline-glutaric acid cocrystal. Cryst Growth Des. 2013;13(3):1153–61.

    Article  CAS  Google Scholar 

  25. Grossjohann C, Eccles KS, Maguire AR, Lawrence SE, Tajber L, Corrigan OI, et al. Characterisation, solubility and intrinsic dissolution behaviour of benzamide: dibenzyl sulfoxide cocrystal. Int J Pharm. 2012;422(1–2):24–32.

    Article  CAS  PubMed  Google Scholar 

  26. Childs SL, Rodriguez-Hornedo N, Reddy LS, Jayasankar A, Maheshwari C, McCausland L, et al. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. Cryst Eng Comm. 2008;10(7):856–64.

    Article  CAS  Google Scholar 

  27. Ainouz A, Authelin JR, Billot P, Lieberman H. Modeling and prediction of cocrystal phase diagrams. Int J Pharm. 2009;374(1–2):82–9.

    Article  CAS  PubMed  Google Scholar 

  28. Croker DM, Foreman ME, Hogan BN, Maguire NM, Elcoate CJ, Hodnett BK, et al. Understanding the p-toluenesulfonamide/triphenylphosphine oxide crystal chemistry: a new 1:1 cocrystal and ternary phase diagram. Cryst Growth Des. 2012;12(2):869–75.

    Article  CAS  Google Scholar 

  29. Seaton CC, Parkin A, Wilson CC, Blagden N. Controlling the formation of benzoic acid: isonicotinamide molecular complexes. Cryst Growth Des. 2009;9(1):47–56.

    Article  CAS  Google Scholar 

  30. Eddleston MD, Lloyd GO, Jones W. Cocrystal dissociation and molecular demixing in the solid state. Chem Commun. 2012;48(65):8075–7.

    Article  CAS  Google Scholar 

  31. Vangala VR, Chow PS, Tan RBH. Co-crystals and co-crystal hydrates of the antibiotic nitrofurantoin: structural studies and physicochemical properties. Cryst Growth Des. 2012;12(12):5925–38.

    Article  CAS  Google Scholar 

  32. Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009;9(6):2950–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Stanton MK, Bak A. Physicochemical properties of pharmaceutical co-crystals: a case study of ten AMG 517 co-crystals. Cryst Growth Des. 2008;8(10):3856–62.

    Article  CAS  Google Scholar 

  34. Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs. slow evaporation from solution. Cryst Growth Des. 2009;9(2):1106–23.

    Article  CAS  Google Scholar 

  35. Espinosa-Lara JC, Guzman-Villanueva D, Arenas-Garcia JI, Herrera-Ruiz D, Rivera-Islas J, Roman-Bravo P, et al. Cocrystals of active pharmaceutical ingredients-praziquantel in combination with oxalic, malonic, succinic, maleic, fumaric, glutaric, adipic, and pimelic acids. Cryst Growth Des. 2013;13(1):169–85.

    Article  CAS  Google Scholar 

  36. Mohamed S, Tocher DA, Price SL. Computational prediction of salt and cocrystal structures-does a proton position matter? Int J Pharm. 2011;418(2):187–98.

    Article  CAS  PubMed  Google Scholar 

  37. Alhalaweh A, George S, Basavoju S, Childs SL, Rizvi SAA, Velaga SP. Pharmaceutical cocrystals of nitrofurantoin: screening, characterization and crystal structure analysis. Cryst Eng Comm. 2012;14(15):5078–88.

    Article  CAS  Google Scholar 

  38. Guo K, Sadiq G, Seaton C, Davey R, Yin QX. Co-crystallization in the caffeine/maleic acid system: lessons from phase equilibria. Cryst Growth Des. 2010;10(1):268–73.

    Article  CAS  Google Scholar 

  39. Yamashita H, Hirakura Y, Yuda M, Teramura T, Terada K. Detection of cocrystal formation based on binary phase. Pharm Res. 2013;30(1):70–80.

    Article  CAS  PubMed  Google Scholar 

  40. Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodriguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453(1):101–25.

    Article  CAS  PubMed  Google Scholar 

  41. Bethune SJ, Huang N, Jayasankar A, Rodriguez-Hornedo N. Understanding and predicting the effect of cocrystal components and pH on cocrystal solubility. Cryst Growth Des. 2009;9(9):3976–88.

    Article  CAS  Google Scholar 

  42. Alhalaweh A, Roy L, Rodriguez-Hornedo N, Velaga SP. pH-dependent solubility of indomethacin-saccharin and carbamazepine-saccharin cocrystals in aqueous media. Mol Pharm. 2012;9(9):2605–12.

    Article  CAS  PubMed  Google Scholar 

  43. Reddy LS, Bethune SJ, Kampf JW, Rodriguez-Hornedo N. Cocrystals and salts of gabapentin: pH dependent cocrystal stability and solubility. Cryst Growth Des. 2009;9(1):378–85.

    Article  CAS  Google Scholar 

  44. Gao YA, Zu H, Zhang JJ. Enhanced dissolution and stability of adefovir dipivoxil by cocrystal formation. J Pharm Pharmacol. 2011;63(4):483–90.

    Article  CAS  PubMed  Google Scholar 

  45. Rahman Z, Samy R, Sayeed VA, Khan MA. Physicochemical and mechanical properties of carbamazepine cocrystals with saccharin. Pharm Dev Technol. 2012;17(4):457–65.

    Article  CAS  PubMed  Google Scholar 

  46. Bruni G, Maietta M, Maggi L, Mustarelli P, Ferrara C, Berbenni V, et al. Preparation and physicochemical characterization of acyclovir cocrystals with improved dissolution properties. J Pharm Sci. 2013;102(11):4079–86.

    Article  CAS  PubMed  Google Scholar 

  47. Bolla G, Sanphui P, Nangia A. Solubility advantage of tenoxicam phenolic cocrystals compared to salts. Cryst Growth Des. 2013;13(5):1988–2003.

    Article  CAS  Google Scholar 

  48. Maddileti D, Jayabun SK, Nangia A. Soluble cocrystals of the xanthine oxidase inhibitor febuxostat. Cryst Growth Des. 2013;13(7):3188–96.

    Article  CAS  Google Scholar 

  49. Luo YH, Sun BW. Pharmaceutical co-crystals of pyrazinecarboxamide (PZA) with various carboxylic acids: crystallography, hirshfeld surfaces, and dissolution study. Cryst Growth Des. 2013;13(5):2098–106.

    Article  CAS  Google Scholar 

  50. Shiraki K, Takata N, Takano R, Hayashi Y, Terada K. Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds. Pharm Res. 2008;25(11):2581–92.

    Article  CAS  PubMed  Google Scholar 

  51. Childs SL, Kandi P, Lingireddy SR. Formulation of a danazol cocrystal with controlled supersaturation plays an essential role in improving bioavailability. Mol Pharm. 2013;10(8):3112–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This study was sponsored by the National Science Foundation of China (81303304), the Innovation Program of the Shanghai Municipal Education Commission (14YZ057), the Specialized Research Fund for the Doctoral Program of Higher Education (20133107120006), and the Nano-specific Project of the Shanghai Science and Technology Commission (12 nm0502400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

SFig. 1

FTIR results of pure MYR. (GIF 323 kb)

High Resolution Image (TIFF 150 kb)

SFig. 2

FTIR results of pure CAF. (GIF 349 kb)

High Resolution Image (TIFF 159 kb)

SFig. 3

FTIR results of MYR-CAF cocrystal. (GIF 321 kb)

High Resolution Image (TIFF 147 kb)

SFig. 4

FTIR results of pure NIC. (GIF 349 kb)

High Resolution Image (TIFF 161 kb)

SFig. 5

FTIR results of MYR-NIC cocrystal. (GIF 122 kb)

High Resolution Image (TIFF 137 kb)

SFig. 6

FTIR results of pure INM. (GIF 329 kb)

High Resolution Image (TIFF 150 kb)

SFig. 7

FTIR results of MYR-INM cocrystal. (GIF 318 kb)

High Resolution Image (TIFF 145 kb)

SFig. 8

FTIR results of pure CYA. (GIF 384 kb)

High Resolution Image (TIFF 178 kb)

SFig. 9

FTIR results of MYR-CYA cocrystal. (GIF 378 kb)

High Resolution Image (TIFF 184 kb)

SFig. 10

PXRD patterns of pure MYR (a), MYR-CAF cocrystal (b), pure CAF (c). (GIF 532 kb)

High Resolution Image (TIFF 133 kb)

SFig. 11

PXRD patterns of pure MYR (a), MYR-NIC cocrystal (d), pure NIC (e). (GIF 529 kb)

High Resolution Image (TIFF 134 kb)

SFig. 12

PXRD patterns of pure MYR (a), MYR-INM cocrystal (f), pure INM (g). (GIF 542 kb)

High Resolution Image (TIFF 131 kb)

SFig. 13

PXRD patterns of pure MYR (a), MYR-CYA cocrystal (h), pure CYA (i). (GIF 500 kb)

High Resolution Image (TIFF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, C., Xie, Y., Yao, Y. et al. A Novel Strategy for Pharmaceutical Cocrystal Generation Without Knowledge of Stoichiometric Ratio: Myricetin Cocrystals and a Ternary Phase Diagram. Pharm Res 32, 47–60 (2015). https://doi.org/10.1007/s11095-014-1443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1443-y

KEY WORDS

Navigation