Skip to main content
Log in

NMR Spectroscopic and Quantum Mechanical Analyses of Enhanced Solubilization of Hesperidin by Theasinensin A

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The use of hesperidin in the pharmaceutical field is limited by its aqueous insolubility. The effects of natural compounds in tea on the solubility of hesperidin were evaluated and the underlying mechanism was investigated by nuclear-magnetic resonance (NMR) and quantum mechanical calculations.

Methods

The solubility of hesperidin was measured by liquid chromatography time-of-flight mass spectrometry; the structure of the hesperidin/theasinensin A complex was characterized by 1H-NMR, diffusion-ordered NMR spectroscopy, and rotating frame NOE spectroscopy, as well as theoretically by quantum mechanical calculations.

Results

Among the natural compounds in tea, theasinensin A was the most effective in improving hesperidin solubility. The complexation of hesperidin with theasinensin A led to changes in the chemical shift of protons in hesperidin (Δδ: 0.01–0.27 ppm) and diffusion coefficient (ΔD: 0.66–1.32 × 10−10 m2/s) of hesperidin. ROE correlation signals between hesperidin and theasinensin A and quantum mechanical calculations revealed that two hesperidin molecules formed a stable complex with theasinensin A (2:1 complex) with a ΔG energy of −23.5 kJ/mol.

Conclusions

This is the first study that provides insight into the enhanced solubility of hesperidin through interactions with theasinensin A via a 2:1 complex formation between hesperidin and theasinensin A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CAF:

Caffeine

CD:

Cyclodextrin

D value:

Diffusion coefficient value

D2O:

Deuterium oxide

DMSO-d 6 :

Dimethyl sulfoxide-d 6

DOSY-NMR:

Diffusion-ordered-NMR spectroscopy

DSS-d 6 :

3-Trimethylsilyl-1-propanesulfonic acid-d 6

EGC:

(−)-Epigallocatechin

EGCG:

(−)-Epigallocatechin-3-O-gallate

Hesp:

Hesperidin

Nrtn:

Narirutin

QM:

Quantum mechanical

ROESY:

Rotating frame NOE spectroscopy

TSA:

Theasinensin A

TSB:

Theasinensin B

References

  1. Garg A, Garg S, Zaneveld LJD, Singla AK. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother Res. 2001;15(8):655–69.

    Article  CAS  PubMed  Google Scholar 

  2. Galati EM, Monforte MT, Kirjavainen S, Forestieri AM, Trovato A, Tripodo MM. Biological effects of hesperidin, a citrus flavonoid. (Note I): antiinflammatory and analgesic activity. Farmaco. 1994;40(11):709–12.

    CAS  PubMed  Google Scholar 

  3. Borradaile NM, Carroll KK, Kurowska EM. Regulation of HepG2 cell apolipoprotein B metabolism by the citrus flavanones hesperetin and naringenin. Lipids. 1999;34(6):591–8.

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka T, Makita H, Ohnishi M, Hirose Y, Wang A, Mori H, et al. Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary curcumin and hesperidin: comparison with the protective effect of β-carotene. Cancer Res. 1994;54(4653):4653–9.

    CAS  PubMed  Google Scholar 

  5. Hwang SL, Shih PH, Yen GC. Neuroprotective effects of citrus flavonoids. J Agric Food Chem. 2012;60(4):877–85.

    Article  CAS  PubMed  Google Scholar 

  6. Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med. 2001;30(4):433–46.

    Article  CAS  PubMed  Google Scholar 

  7. Gaur V, Kumar A. Hesperidin pre-treatment attenuates NO-mediated cerebral ischemic reperfusion injury and memory dysfunction. Pharmacol Rep. 2010;62(4):635–48.

    Article  CAS  PubMed  Google Scholar 

  8. Gil JM, Rego AC. Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci. 2008;27(11):2803–20.

    Article  PubMed  Google Scholar 

  9. Figueiras A, Sarraguca JMG, Carvalho RA, Pais AACC, Veiga FJB. Interaction of omeprazole with a methylated derivative of β-cyclodextrin: phase solubility, NMR spectroscopy and molecular simulation. Pharm Res. 2007;24(2):377–89.

    Article  CAS  PubMed  Google Scholar 

  10. Vallejo F, Larrosa M, Escudero E, Zafrilla MP, Cerda B, Boza J, et al. Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. J Agric Food Chem. 2010;58(10):6516–24.

    Article  CAS  PubMed  Google Scholar 

  11. Kometani T, Terada Y, Nishimura T, Takii H, Okada S. Transglycosylation to hesperidin by cyclodextrin glucanotransferase from an alkalophilic Bacillus species in alkaline pH and properties of hesperidin glycosides. Biosci Biotechnol Biochem. 1994;58(11):1990–4.

    Article  CAS  Google Scholar 

  12. Majumdar S, Srirangam R. Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: a natural bioflavonoid. Pharm Res. 2009;26(5):1217–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakayama H, Tanaka T, Miyata Y, Saito Y, Matsui T, Aramaki S, et al. Development of soluble hesperidin-containing fermented tea made from unripe mandarin orange fruits and third crop green tea leaves. J Jpn Soc Nutr Food Sci. 2014;67(2):95–103.

    Article  CAS  Google Scholar 

  14. Shii T, Miyamoto M, Matsuo Y, Tanaka T, Kouno I. Biomimetic one-pot preparation of a black tea polyphenol theasinensin A from epigallocatechin gallate by treatment with copper (II) chloride and ascorbic acid. Chem Pharm Bull. 2011;59(9):1183–5.

    Article  CAS  PubMed  Google Scholar 

  15. Shii T, Tanaka T, Watarumi S, Matsuo Y, Miyata Y, Tamaya K, et al. Polyphenol composition of a functional fermented tea obtained by tea-rolling processing of green tea and loquat leaves. J Agric Food Chem. 2011;59(13):7253–60.

    Article  CAS  PubMed  Google Scholar 

  16. Caligiani A, Acquotti D, Palla G, Bocchi V. Identification and quantification of the main organic components of vinegars by high resolution 1H NMR spectroscopy. Anal Chim Acta. 2007;585(1):110–9.

    Article  CAS  PubMed  Google Scholar 

  17. Cao R, Komura F, Nonaka A, Kato T, Fukumashi J, Matsui T. Quantitative analysis of D-(+)-glucose in fruit juices using diffusion ordered-1H nuclear magnetic resonance spectroscopy. Anal Sci. 2014;30(3):383–8.

  18. Cao R, Nonaka A, Komura F, Matsui T. Application of diffusion ordered-1H-nuclear magnetic resonance spectroscopy to quantify sucrose in beverages. Food Chem. 2015;171(3):8–12.

  19. Lucas LH, Otto WH, Larive CK. The 2D-J-DOSY experiment: resolving diffusion coefficients in mixtures. J Magn Reson. 2002;156(1):138–45.

    Article  CAS  PubMed  Google Scholar 

  20. Yanai T, Tew DP, Handy NC. A new hybrid exchange-correlation functional using the Coulomb-Attenuating Method (CAM-B3LYP). Chem Phys Lett. 2004;393(1–3):51–7.

  21. Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105(8):2999–3093.

    Article  CAS  PubMed  Google Scholar 

  22. Cai Y, Gaffney SH, Lilley TH, Magnolato D, Martin R, Spencer CM, et al. Polyphenol interactions. Part 4. Model studies with caffeine and cyclodextrins. J Chem Soc Perkin Trans. 1990;2(12):2197–209.

    Article  Google Scholar 

  23. Pescitelli G, Bilia AR, Bergonzi MC, Vincieri FF, Di Bari L. Cyclodextrins as carriers for kavalactones in aqueous media: spectroscopic characterization of (S)-7,8-dihydrokavain and β-cyclodextrin inclusion complex. J Pharm Biomed Anal. 2010;52(4):479–83.

    Article  CAS  PubMed  Google Scholar 

  24. Ficarra R, Tommasini S, Raneri D, Calabro ML, Di Bella MR, Rustichelli C, et al. Study of flavonoids/β-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation. J Pharm Biomed Anal. 2002;29(6):1005–14.

    Article  CAS  PubMed  Google Scholar 

  25. Rasool AA, Hussain AA, Dittert LW. Solubility enhancement of some water-insoluble drugs in the presence of nicotinamide and related compounds. J Pharm Sci. 1991;80(4):387–93.

    Article  CAS  PubMed  Google Scholar 

  26. Khan MTHK, Dedachi K, Matsui T, Kurita N, Borgatti M, Gambari R, et al. Dipeptide inhibitors of thermolysin and angiotensin I-converting enzyme. Curr Top Med Chem. 2012;12(16):1748–62.

    Article  CAS  PubMed  Google Scholar 

  27. Kumrungsee T, Saiki T, Akiyama S, Nakashima K, Tanaka M, Kobayashi Y, et al. Inhibition of calcium-calmodulin complex formation by vasorelaxant basic dipeptides demonstrated by in vitro and in silico analyses. Biochim Biophys Acta. 2014;1840(10):3073–8.

    Article  CAS  PubMed  Google Scholar 

  28. Jullian C, Miranda S, Zapata-Torres G, Mendizabal F, Olea-Azar C. Studies of inclusion complexes of natural and modified cyclodextrin with (+)-catechin by NMR and molecular modeling. Bioorg Med Chem. 2007;15(2):3217–24.

    Article  CAS  PubMed  Google Scholar 

  29. Tsutsumi H, Sato T, Ishizu T. Stereochemical structure and intermolecular interaction complexes of (-)-gallocatechin-3-O-gallate and caffeine. Chem Pharm Bull. 2011;59(1):100–5.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported in part by Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry in Japan, and by Adaptable and Seamless Technology Transfer Program through target-driven R&D, JST in Japan. The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Matsui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Change in chemical shift (∆δ, ppm) of protons in narirutin complexed with theasinensin A (Nrtn-TSA) at molar ratios of 1:1 to 1:10 in 10% DMSO-d 6 (a) and in D2O (b) at 25°C. The ∆δ was calculated by the difference between the δ value of narirutin alone and that of narirutin complexed with TSA. Target protons of narirutin were H2, H6′, H5′, H2′, H6, H3′, and H8. (GIF 31 kb)

High Resolution (TIFF 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R., Kobayashi, Y., Nonaka, A. et al. NMR Spectroscopic and Quantum Mechanical Analyses of Enhanced Solubilization of Hesperidin by Theasinensin A. Pharm Res 32, 2301–2309 (2015). https://doi.org/10.1007/s11095-015-1621-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1621-6

KEY WORDS

Navigation