Skip to main content

Advertisement

Log in

Sodium Acetate Coated Tenofovir-Loaded Chitosan Nanoparticles for Improved Physico-Chemical Properties

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

It is hypothesized that sodium acetate (SA) can be used for in situ coating of drug loaded chitosan NPs for improved physico-chemical properties.

Methods

Tenofovir (TFV) is used as a model drug. Uncoated chitosan NPs are prepared by ionic gelation. SA is generated in situ from half neutralization of acetic acid with sodium hydroxide, and coats chitosan NPs during freeze-drying. The NPs' physico-chemical properties [e.g., particle mean diameters (PMD) zeta potential (ζ), EE%, drug release profile, morphology] are characterized by dynamic light scattering, spectrophotometry, Korsmeyer-Peppas model, transmission electron microscopy (TEM), respectively. Melting point (MP), non-aqueous titration, Fourier transform infrared (FTIR) analysis, and powder X-ray diffractometry (XRD) pattern evaluate the SA coated chitosan NPs. The NPs' cytotoxicity on macrophages Raw 264.7 is assessed by neutral red, resazurin, nitrite oxide (NO) and cytokines assays.

Results

Collectively, FTIR, ζ, XRD, MP, and TEM data confirm that SA coats chitosan NPs. The PMD range is 136–348 nm (uncoated) and 171–379 nm (coated NPs). The ζ values range is +24.3–28.5 mV (uncoated) and 0.1–3.1 mV (coated NPs). The EE% ranges from 5.5 to 11.7% (uncoated NPs) and increased up to 86.3-92.7%(8-17-fold) after coating. The SA also prevents NPs aggregation during the freeze-drying and aqueous dispersion. The core-shell NPs exhibited a sustain release of TFV following anomalous transport mechanism (R2 ~ 0.99). The coated NPs are non-cytotoxic (cell viability ~100%) and without any proinflammatory response.

Conclusions

This SA coating chitosan NPs mechanism may be useful for (i) efficient encapsulation, (ii) stabilizing colloidal dispersions, (iii) controlling the release and solubility of bioactive agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BCS:

Biopharmaceutics classification system

DPBS:

Dulbecco’s phosphate buffered saline

DMEM:

Dulbecco’s modified eagle medium

EE %:

Percent encapsulation efficiency

F:

Formulation

FBS:

Fetal bovine serum

FTIR:

Fourier transform infrared

HSD:

Honestly significant difference

HVF:

Human vaginal fluid

IL:

Interleukin

LM:

Lithium methoxide

LPS:

Lipopolysaccharide

M:

Molar mass

Mc:

Molar mass corrected

NO:

Nitric oxide

NPs:

Nanoparticles

NR:

Neutral red

PA:

Perchloric acid

PDI:

Polydispersity index

PMD:

Particle mean diameters

SA:

Sodium acetate

SAA:

Sodium acetate anhydrous

SAT:

Sodium acetate trihydrate

SD:

Sodium diacetate

TEM:

Transmission electron microscopy

TFV:

Tenofovir

TPP:

Polyanion triphosphate

V:

Volume

XRD:

Powder X-ray diffractometry

ζ:

Zeta potential

References

  1. Lee YL, Cesario T, Owens J, Shanbrom E, Thrupp LD. Antibacterial activity of citrate and acetate. Nutrition. 2002;18(7–8):665–6.

    Article  CAS  PubMed  Google Scholar 

  2. Frech G, Allen Jr LV, Stiles ML, Levinson RS. Sodium acetate as a preservative in protein hydrolysate solutions. Am J Hosp Pharm. 1979;36(12):1672–5.

    CAS  PubMed  Google Scholar 

  3. Karaca H, Perez-Gago MB, Taberner V, Palou L. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums. Int J Food Microbiol. 2014;179:72–9.

    Article  CAS  PubMed  Google Scholar 

  4. Costa C, Conte A, Del Nobile MA. Effective preservation techniques to prolong the shelf life of ready-to-eat oysters. J Sci Food Agric. 2014;94(13):2661–7.

    Article  CAS  PubMed  Google Scholar 

  5. Millard S, Larson H, Henry JF. Process of producing sodium or potassium acetate, propionate or butyrate. 1959; US Patent 2,895,990.

  6. Zheng H, Tang C, Yin C. Exploring advantages/disadvantages and improvements in overcoming gene delivery barriers of amino Acid modified trimethylated chitosan. Pharm Res. 2015;32(6):2038–50.

    Article  CAS  PubMed  Google Scholar 

  7. Meng J, Sturgis TF, Youan BB. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci. 2011;44(1–2):57–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ngo AN, Ezoulin MJ, Youm I, Youan BB. Optimal Concentration of 2,2,2-Trichloroacetic Acid for Protein Precipitation Based on Response Surface Methodology. J Anal Bioanal Tech. 2014; 5(4).

  9. Date AA, Destache CJ. A review of nanotechnological approaches for the prophylaxis of HIV/AIDS. Biomaterials. 2013;34(26):6202–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Rautio J, Mannhold R, Kubinyl H, Folkers G. Prodrugs and Targeted Delivery. Wiley VCH: Hoboken; 2010.

    Book  Google Scholar 

  11. Solinova V, Kasicka V, Sazelova P, Holy A. Chiral analysis of anti-acquired immunodeficiency syndrome drug, 9-(R)-[2-(phosphonomethoxy)propyl]adenine (tenofovir), and related antiviral acyclic nucleoside phosphonates by CE using beta-CD as chiral selector. Electrophoresis. 2009;30(12):2245–54.

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Zheng C, Wu Z, Teng D, Zhang X, Wang Z, Li C. Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J Biomed Mater Res B Appl Biomater Part B, Appl Biomat. 2009;88(1):150–61.

  13. Rampino A, Borgogna M, Blasi P, Bellich B, Cesaro A. Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm. 2013;455(1–2):219–28.

    Article  CAS  PubMed  Google Scholar 

  14. Cullity BD, Stock SR. Elements X-ray Diffraction. Prentice-hall, Inc: Upper Saddle River; 2001.

    Google Scholar 

  15. Fritz JS. Titration of Bases in Nonaqueous Solvents. Anal Chem. 1950; 22(8).

  16. Bruss DB, Harlow GA. Titration of Weak Acids in Nonaqueous Solvents: Potentiometric Studies in Inert Solvents. Anal Chem. 1958; 30(11).

  17. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  PubMed  Google Scholar 

  18. Wadajkar AS, Kadapure T, Zhang Y, Cui W, Nguyen KT, Yang J. Dual-imaging enabled cancer-targeting nanoparticles. Adv Health Mater. 2012;1(4):450–6.

  19. Panda SK, Kumar S, Tupperwar NC, Vaidya T, George A, Rath S, Bal V, Ravindran B. Chitohexaose activates macrophages by alternate pathway through TLR4 and blocks endotoxemia. PLoS Pathog. 2012;8(5):e1002717.

  20. Connelly L, Palacios-Callender M, Ameixa C, Moncada S, Hobbs AJ. Biphasic regulation of NF-kappa B activity underlies the pro- and anti-inflammatory actions of nitric oxide. J Immunol. 2001;166(6):3873–81.

    Article  CAS  PubMed  Google Scholar 

  21. Vega-Avila E, Pugsley MK. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc. 2011;54:10–4.

    CAS  PubMed  Google Scholar 

  22. Hannah RW, Mayo D, Miller FA. Course notes on the interpretaion of Infrared and Raman Spectra. Willey & Sons Publication 2004;:210–213.

  23. Cho J, Heuzey MC, Begin A, Carreau PJ. Physical gelation of chitosan in the presence of beta-glycerophosphate: the effect of temperature. Biomacromolecules. 2005;6(6):3267–75.

    Article  CAS  PubMed  Google Scholar 

  24. van Beilen JW. Teixeira de Mattos MJ, Hellingwerf KJ, Brul S. Distinct effects of sorbic acid and acetic acid on the electrophysiology and metabolism of Bacillus subtilis. Appl Environ Microbiol. 2014;80(19):5918–26.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Po HN, Senozan NM. The Henderson–Hasselbalch equation: its history and limitations. J Chemical Educ. 2001;78(11):1499–503.

  26. Bigucci F, Abruzzo A, Vitali B, Saladini B, Cerchiara T, Gallucci MC, Luppi B.  Vaginal inserts based on chitosan and carboxymethylcellulose complexes for local delivery of chlorhexidine: preparation, characterization and antimicrobial activity. Int J Pharm. 2015;478(2):456–63.

  27. Mi F, Shyu S, Wong T, Jang S, Lee S, Lu K. Chitosan–polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II. effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent. J Appl Pol Sci. 1999;74:1093–107.

    Article  CAS  Google Scholar 

  28. Holleman AF, Wiberg E. Inorganic chemistry. Orlando: Harcourt Science and Technology company; 2001.

    Google Scholar 

  29. Magder S, Emami A. Practical approach to physical-chemical acid–base management. Stewart at the bedside. Ann Am Thorac Soc. 2015;12(1):111–7.

    Article  PubMed  Google Scholar 

  30. Hu W, Ding L, Cao J, Liu L, Wei Y, Fang Y.. Protein binding-induced surfactant aggregation variation: a new strategy of developing fluorescent aqueous sensor for proteins. ACS Appl Mater Interf. 2015;7(8):4728–36.

  31. Padhiyar TC, Thakore SB. Recovery of acetic acid from effluent via freeze crystallization. Int J Sci Eng Technol. 2013;2(4):211–5.

  32. Cengel YAT, Robert H. fundamentals of thermal-fluid sciences. Boston: McGraw-Hill; 2004.

    Google Scholar 

  33. Agreda VH, Zoeller JR. Acetic acid and its derivatives. New York: Marcel Dekker; 2001.

    Google Scholar 

  34. Atkins P, de Paula J. Atkin's physical chemistry. 9th ed. New York: W.H Freeman and company; 2010.

    Google Scholar 

  35. Minofar B, Jungwirth P , Das MR,  Kunz W, Mahiuddin S. Propensity of formate, acetate, benzoate, and phenolate for the aqueous solution/vapor interface: surface tension measurements and molecular dynamics simulations. J Phys Chem. 2007;111:8242–7.

  36. Barrow MJ, Murdoch Currie K, Muir W, Clare Speakman J, White DNJ. (Crystal structures of some acid salts of monobasic acids. part XVII. Structure of sodium hydrogen diacetate, redetermined by neutron diffraction. J Chem Soc. Perkin 2:15–17.

  37. Cameron TS, Mannan KM, Rahaman MO. The crystal structure of sodium acetate trihydrate. Acta Crystal B. 1976;32:87–90.

    Article  Google Scholar 

  38. Cullity BD, Stock SR (2001) Elements x-ray diffraction. 2001; Book, ISBN 0-201-61091-4 3 296.

  39. Zambito Y, Pedreschi E, Di-Colo G. Is dialysis a reliable method for studying drug release from nanoparticulate systems?-A case study. Int J Pharm. 2012;434(1–2):28–34.

    Article  CAS  PubMed  Google Scholar 

  40. Chavanpatil MD, Jain P, Chaudhari S, Shear R, Vavia PR. Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin. Int J Pharm. 2006;316(1–2):86–92.

    Article  CAS  PubMed  Google Scholar 

  41. Smith A, Perelman M, Hinchcliffe M. Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines. Hum Vac Immunother. 2014;10(3):797–807.

    Article  Google Scholar 

  42. Lopez-Garcia J, Lehocky M, Humpolicek P, Saha P. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J Funct Biomater. 2014;5(2):43–57.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Introini A, Vanpouille C, Lisco A, Grivel JC, Margolis L. Interleukin-7 facilitates HIV-1 transmission to cervico-vaginal tissue ex vivo. PLoS Pathog. 2013;9(2):e1003148.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work is supported by award number R01 AI087304, from the National Institute of Allergic and Infectious Diseases (Bethesda, MD, USA). The content is solely the responsibility of the authors and does not necessarily represent the official view of the national Institute of Allergy and infectious Diseases or the national Institutes of Health. The work is patent pending, provisional patent application #62/173,772.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Botti C. Youan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Colorless aqueous soltuion of chitosan dissolved in 2% v/v glacial acetic acid (A), and formation of uncoated chitosan NPs through ionic gelation technique. The color of the solution changes from colorless to milky (Tyndall effect) (B). (GIF 305 kb)

High resolution image (TIFF 477 kb)

Fig. S2

Aggregation of chitosan NPs for “blank “, F1, F2, F3 formulation using the classical ionic gelation process after freeze drying respectively without use of cryoprotectant (A). It is noteworhty that SA coated chitosan NPs prevents their aggregation during freeze-drying process without also use of cryprotectant (B). (GIF 302 kb)

High resolution image (TIFF 435 kb)

Fig. S3

Uncoated chitosan NPs forming a ‘cake’ using the classical ionic gelation process cannot be dispersed in deionized water for the blank and the three formulations (F1, F2 and F3) formulation, respectively after freeze drying without the use of cryprotectant and surfactant (A). Sodium acetate (SA) coated chitosan NPs can be easily dispersed (~10 mg/mL) in deionized water due to the hydrotropic properties of SA without also the use of cryoprotant and surfactant (B). (GIF 264 kb)

High resolution image (TIFF 334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, A.N., Ezoulin, M.J.M., Murowchick, J.B. et al. Sodium Acetate Coated Tenofovir-Loaded Chitosan Nanoparticles for Improved Physico-Chemical Properties. Pharm Res 33, 367–383 (2016). https://doi.org/10.1007/s11095-015-1795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1795-y

KEY WORDS

Navigation