Skip to main content

Advertisement

Log in

Disease-Induced Alterations in Brain Drug Transporters in Animal Models of Alzheimer’s Disease

Theme: Drug Discovery, Development and Delivery in Alzheimer’s Disease Guest Editor: Davide Brambilla

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Alzheimer’s disease (AD) may disturb functions of the blood-brain barrier and change the disposition of drugs to the brain. This study assessed the disease-induced changes in drug transporters in the brain capillaries of transgenic AD mice.

Methods

Eighteen drug transporters and four tight junction-associated proteins were analyzed by RT-qPCR in cortex, hippocampus and cerebellum tissue samples of 12–16-month-old APdE9, Tg2576 and APP/PS1 transgenic mice and their healthy age-matched controls. In addition, microvessel fractions enriched from 1-3-month-old APdE9 mice were analyzed using RT-qPCR and Western blotting. Brain transport of methotrexate in APdE9 mice was assessed by in vivo microdialysis.

Results

The expression profiles of studied genes were similar in brain tissues of AD and control mice. Instead, in the microvessel fraction in APdE9 mice, >2-fold alterations were detected in the expressions of 11 genes but none at the protein level. In control mice strains, >5-fold changes between different brain regions were identified for Slc15a2, Slc22a3 and occludin. Methotrexate distribution into hippocampus of APdE9 mice was faster than in controls.

Conclusions

The expression profile of mice carrying presenilin and amyloid precursor protein mutations is comparable to controls, but clear regional differences exist in the expression of drug transporters in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

amyloid-β:

BBB:

Blood-brain barrier

CB:

Cerebellum

CX:

Cortex

HC:

Hippocampus

wt:

Wild type

References

  1. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet. 2011;377(9770):1019–31.

    Article  Google Scholar 

  2. Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab. 2013;33(10):1500–13.

    Article  CAS  Google Scholar 

  3. Stieger B, Gao B. Drug transporters in the central nervous system. Clin Pharmacokinet. 2015;54(3):225–42.

    Article  CAS  Google Scholar 

  4. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem. 2011;117(2):333–45.

    Article  CAS  Google Scholar 

  5. Agarwal S, Uchida Y, Mittapalli RK, Sane R, Terasaki T, Elmquist WF. Quantitative proteomics of transporter expression in brain capillary endothelial cells isolated from P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and P-gp/Bcrp knockout mice. Drug Metab Dispos. 2012;40(6):1164–9.

    Article  CAS  Google Scholar 

  6. Geier EG, Chen EC, Webb A, Papp AC, Yee SW, Sadee W, et al. Profiling solute carrier transporters in the human blood-brain barrier. Clin Pharmacol Ther. 2013;94(6):636–9.

    Article  CAS  Google Scholar 

  7. Nies AT, Jedlitschky G, Konig J, Herold-Mende C, Steiner HH, Schmitt HP, et al. Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience. 2004;129(2):349–60.

    Article  CAS  Google Scholar 

  8. Hartz AM, Miller DS, Bauer B. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer's disease. Mol Pharmacol. 2010;77(5):715–23.

    Article  CAS  Google Scholar 

  9. Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W, et al. Deposition of Alzheimer's beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics. 2002;12(7):535–41.

    Article  CAS  Google Scholar 

  10. Wijesuriya HC, Bullock JY, Faull RL, Hladky SB, Barrand MA. ABC efflux transporters in brain vasculature of Alzheimer's subjects. Brain Res. 2010;1358:228–38.

    Article  CAS  Google Scholar 

  11. Jeynes B, Provias J. An investigation into the role of P-glycoprotein in Alzheimer's disease lesion pathogenesis. Neurosci Lett. 2011;487(3):389–93.

    Article  CAS  Google Scholar 

  12. Carrano A, Snkhchyan H, Kooij G, van der Pol S, van Horssen J, Veerhuis R, et al. ATP-binding cassette transporters P-glycoprotein and breast cancer related protein are reduced in capillary cerebral amyloid angiopathy. Neurobiol Aging. 2014;35(3):565–75.

    Article  CAS  Google Scholar 

  13. Kannan P, Schain M, Kretzschmar WW, Weidner L, Mitsios N, Gulyas B, et al. An automated method measures variability in P-glycoprotein and ABCG2 densities across brain regions and brain matter. J Cereb Blood Flow Metab. 2016;01:271678X16660984.

    Google Scholar 

  14. van Assema DM, Lubberink M, Bauer M, van der Flier WM, Schuit RC, Windhorst AD, et al. Blood-brain barrier P-glycoprotein function in Alzheimer's disease. Brain. 2012;135(Pt 1):181–9.

    Article  Google Scholar 

  15. Xiong H, Callaghan D, Jones A, Bai J, Rasquinha I, Smith C, et al. ABCG2 is upregulated in Alzheimer's brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1–40) peptides. J Neurosci. 2009;29(17):5463–75.

    Article  CAS  Google Scholar 

  16. Mehta DC, Short JL, Nicolazzo JA. Altered brain uptake of therapeutics in a triple transgenic mouse model of Alzheimer's disease. Pharm Res. 2013;30(11):2868–79.

    Article  CAS  Google Scholar 

  17. Do TM, Dodacki A, Alata W, Calon F, Nicolic S, Scherrmann JM, et al. Age-dependent regulation of the blood-brain barrier influx/efflux equilibrium of amyloid-beta peptide in a mouse model of Alzheimer's disease (3xTg-AD). J Alzheimers Dis. 2016;49(2):287–300.

    Article  CAS  Google Scholar 

  18. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet. 2004;13(2):159–70.

    Article  CAS  Google Scholar 

  19. Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng. 2001;17(6):157–65.

    Article  CAS  Google Scholar 

  20. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996;274(5284):99–102.

    Article  CAS  Google Scholar 

  21. Coisne C, Dehouck L, Faveeuw C, Delplace Y, Miller F, Landry C, et al. Mouse syngenic in vitro blood-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Lab Investig. 2005;85(6):734–46.

    Article  CAS  Google Scholar 

  22. Muller PY, Janovjak H, Miserez AR, Dobbie Z. Processing of gene expression data generated by quantitative real-time RT-PCR. BioTechniques. 2002;32(6):1372. -4, 1376, 1378-9

    CAS  PubMed  Google Scholar 

  23. Sane R, Wu SP, Zhang R, Gallo JM. The effect of ABCG2 and ABCC4 on the pharmacokinetics of methotrexate in the brain. Drug Metab Dispos. 2014;42(4):537–40.

    Article  Google Scholar 

  24. Pahnke J, Langer O, Krohn M. Alzheimer's and ABC transporters--new opportunities for diagnostics and treatment. Neurobiol Dis. 2014;72(Pt A):54–60.

    Article  CAS  Google Scholar 

  25. Middeldorp J, Hol EM. GFAP in health and disease. Prog Neurobiol. 2011;93(3):421–43.

    Article  CAS  Google Scholar 

  26. Loryan I, Melander E, Svensson M, Payan M, Konig F, Jansson B, et al. In-depth neuropharmacokinetic analysis of antipsychotics based on a novel approach to estimate unbound target-site concentration in CNS regions: link to spatial receptor occupancy. Mol Psychiatry. 2016;21(11):1527–36.

    Article  CAS  Google Scholar 

  27. Kuntner C, Bankstahl JP, Bankstahl M, Stanek J, Wanek T, Stundner G, et al. Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[(11)C]verapamil PET. Eur J Nucl Med Mol Imaging. 2010;37(5):942–53.

    Article  CAS  Google Scholar 

  28. Zhao R, Pollack GM. Regional differences in capillary density, perfusion rate, and P-glycoprotein activity: a quantitative analysis of regional drug exposure in the brain. Biochem Pharmacol. 2009;78(8):1052–9.

    Article  CAS  Google Scholar 

  29. Brown WR, Thore CR. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol. 2011;37(1):56–74.

    Article  CAS  Google Scholar 

  30. van de Steeg E, van der Kruijssen CM, Wagenaar E, Burggraaff JE, Mesman E, Kenworthy KE, et al. Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos. 2009;37(2):277–81.

    Article  Google Scholar 

  31. Badagnani I, Castro RA, Taylor TR, Brett CM, Huang CC, Stryke D, et al. Interaction of methotrexate with organic-anion transporting polypeptide 1A2 and its genetic variants. J Pharmacol Exp Ther. 2006;318(2):521–9.

    Article  CAS  Google Scholar 

  32. Zhu Y, Meng Q, Wang C, Liu Q, Huo X, Zhang A, et al. Methotrexate-bestatin interaction: involvement of P-glycoprotein and organic anion transporters in rats. Int J Pharm. 2014;465(1–2):368–77.

    Article  CAS  Google Scholar 

  33. Kanamitsu K, Kusuhara H, Schuetz JD, Takeuchi K, Sugiyama Y. Investigation of the importance of multidrug resistance-associated protein 4 (Mrp4/Abcc4) in the active efflux of anionic drugs across the blood-brain barrier. J Pharm Sci. 2017;106(9):2566–75.

    Article  CAS  Google Scholar 

  34. Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH, et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther. 2002;302(2):666–71.

    Article  CAS  Google Scholar 

  35. Hartz AM, Bauer B, Soldner EL, Wolf A, Boy S, Backhaus R, et al. Amyloid-beta contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke. 2012;43(2):514–23.

    Article  CAS  Google Scholar 

  36. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485(7399):512–6.

    Article  CAS  Google Scholar 

  37. de Lange EC, de Vries JD, Zurcher C, Danhof M, de Boer AG, Breimer DD. The use of intracerebral microdialysis for the determination of pharmacokinetic profiles of anticancer drugs in tumor-bearing rat brain. Pharm Res. 1995;12(12):1924–31.

    Article  Google Scholar 

  38. Bien-Ly N, Boswell CA, Jeet S, Beach TG, Hoyte K, Luk W, et al. Lack of widespread BBB disruption in Alzheimer's disease models: Focus on therapeutic antibodies. Neuron. 2015;88(2):289–97.

    Article  CAS  Google Scholar 

  39. Cheng Z, Zhang J, Liu H, Li Y, Zhao Y, Yang E. Central nervous system penetration for small molecule therapeutic agents does not increase in multiple sclerosis- and Alzheimer's disease-related animal models despite reported blood-brain barrier disruption. Drug Metab Dispos. 2010;38(8):1355–61.

    Article  CAS  Google Scholar 

  40. Kalvass JC, Polli JW, Bourdet DL, Feng B, Huang SM, Liu X, et al. Why clinical modulation of efflux transport at the human blood-brain barrier is unlikely: the ITC evidence-based position. Clin Pharmacol Ther. 2013;94(1):80–94.

    Article  CAS  Google Scholar 

  41. Kelly SD, Harrell CS, Neigh GN. Chronic stress modulates regional cerebral glucose transporter expression in an age-specific and sexually-dimorphic manner. Physiol Behav. 2014;126:39–49.

    Article  CAS  Google Scholar 

  42. Flores K, Manautou JE, Renfro JL. Gender-specific expression of ATP-binding cassette (Abc) transporters and cytoprotective genes in mouse choroid plexus. Toxicology. 2017;386:84–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

This study was funded by Academy of Finland (Grant number 257386). Finnish Cultural Foundation is also acknowledged for financial support. KMK and TM acknowledges the funding from the Academy of Finland and Sigrid Juselius Foundation. We thank Dr. Aaro Jalkanen for advice in designing microdialysis experiment, Prof. Seppo Auriola for consultation in LC-MS/MS analysis and Lecturer Veli-Pekka Ranta for advice regarding pharmacokinetics. Mrs. Jaana Leskinen, Mrs. Leena Pietilä and Mrs. Lea Pirskanen are acknowledged for technical assistance. The authors declare that they have no conflict of interest. All applicable international, national and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the University of Eastern Finland or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati-Sisko Vellonen.

Electronic supplementary material

ESM 1

(DOCX 19.3 kb)

ESM 2

(DOCX 22.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vellonen, KS., Ihalainen, J., Boucau, MC. et al. Disease-Induced Alterations in Brain Drug Transporters in Animal Models of Alzheimer’s Disease. Pharm Res 34, 2652–2662 (2017). https://doi.org/10.1007/s11095-017-2263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2263-7

KEY WORDS

Navigation