Skip to main content

Advertisement

Log in

Development and Evaluation of Tri-Functional Immunoliposomes for the Treatment of HER2 Positive Breast Cancer

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Trastuzumab combined with Doxorubicin (DOX) demonstrates significant clinical activity in human epidermal growth factor receptor-2 (HER2)-positive breast cancer (BC). However, emergence of treatment resistance and trastuzumab associated cardiotoxicity remain clinical challenges. In an effort to improve patient outcome, we have developed and evaluated novel tri-functional immunoliposomes (TFIL) that target HER2-receptors on BC cells and CD3-receptors on T-lymphocytes, and deliver DOX.

Methods

Trastuzumab (anti-HER2) and OKT-3 (anti-CD3) antibodies were conjugated to liposomes using a micelle-transfer method. Cytotoxicity of targeted immunoliposomes loaded with DOX was examined in vitro on HER2-positive BC cells (BT474), with peripheral blood monocytic cells (PBMC) as immune effector cells.

Results

TFIL demonstrated high antibody-liposome conjugation ratios (100–130 μg protein/μmol phospholipid) and cargo capacity (0.21 mol:mol drug:lipid), highly efficient DOX loading (>90%), a particle size favorable for extended circulation (~150 nm), and good stability (up to 3 months at 4°C). In the presence of PBMCs, TFIL showed complete killing of BT474 cells, and were superior to mono-targeted trastuzumab-bearing liposomes, non-targeted liposomes, and free Trastuzumab and DOX.

Conclusions

Novel anti-HER2xCD3 + DOX TFIL show promise as a means to both engage immune cells against HER2 positive breast cancer cells and deliver chemotherapy, and have the potential to improve clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BC:

Breast Cancer

CD3:

Cluster of Differentiation Receptor Type 3

CTLs:

Cytotoxic T Lymphocytes

DOX:

Doxorubicin

HER2:

Human Epidermal Growth Factor Receptor Type 2

PBMCs:

Peripheral Blood Mononuclear Cells

TFIL:

Tri-Functional Immunoliposomes

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  PubMed  Google Scholar 

  2. Burstein HJ. The distinctive nature of HER2-positive breast cancers. N Engl J Med. 2005;353(16):1652–4.

    Article  CAS  PubMed  Google Scholar 

  3. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (New York). 1987;235(4785):177–82.

    Article  CAS  Google Scholar 

  4. Harari D, Yarden Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene. 2000;19(53):6102–14.

    Article  CAS  PubMed  Google Scholar 

  5. Yarden Y. Biology of HER2 and its importance in breast cancer. Oncology. 2001;61(Suppl 2):1–13.

    Article  CAS  PubMed  Google Scholar 

  6. Kallioniemi OP, Kallioniemi A, Kurisu W, Thor A, Chen LC, Smith HS, et al. ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci U S A. 1992;89(12):5321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28(20):3271–7.

    Article  PubMed  Google Scholar 

  8. Valabrega G, Montemurro F, Aglietta M. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol. 2007;18(6):977–84.

    Article  CAS  PubMed  Google Scholar 

  9. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012;9(1):16–32.

    Article  CAS  Google Scholar 

  10. Baselga J, Albanell J. Mechanism of action of anti-HER2 monoclonal antibodies. Ann Oncol. 2001;12(Suppl 1):S35–41.

    Article  PubMed  Google Scholar 

  11. Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol. 1997;151(6):1523–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mohsin SK, Weiss HL, Gutierrez MC, Chamness GC, Schiff R, Digiovanna MP, et al. Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J Clin Oncol. 2005;23(11):2460–8.

    Article  CAS  PubMed  Google Scholar 

  13. Baselga J. Clinical trials of Herceptin(R) (trastuzumab). Eur J Cancer. 2001;37(Suppl 1):18–24.

    Article  PubMed  Google Scholar 

  14. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.

    Article  CAS  PubMed  Google Scholar 

  15. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.

    Article  CAS  PubMed  Google Scholar 

  17. Onitilo AA, Engel JM, Stankowski RV. Cardiovascular toxicity associated with adjuvant trastuzumab therapy: prevalence, patient characteristics, and risk factors. Ther Adv Drug Saf. 2014;5(4):154–66.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pohlmann PR, Mayer IA, Mernaugh R. Resistance to Trastuzumab in breast cancer. Clin Cancer Res. 2009;15(24):7479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rexer BN, Arteaga CL. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications. Crit Rev Oncog. 2012;17(1):1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Staerz UD, Kanagawa O, Bevan MJ. Hybrid antibodies can target sites for attack by T cells. Nature. 1985;314(6012):628–31.

    Article  CAS  PubMed  Google Scholar 

  21. Perez P, Hoffman RW, Shaw S, Bluestone JA, Segal DM. Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature. 1985;316(6026):354–6.

    Article  CAS  PubMed  Google Scholar 

  22. O'Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440–9.

    Article  PubMed  Google Scholar 

  23. Torchilin V, Weissig V. Liposomes: a practical approach. New York: Oxford University Press; 2003.

    Google Scholar 

  24. Saito R, Bringas JR, McKnight TR, Wendland MF, Mamot C, Drummond DC, et al. Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res. 2004;64(7):2572–9.

    Article  CAS  PubMed  Google Scholar 

  25. Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB. The liposomal formulation of doxorubicin. Methods Enzymol. 2005;391:71–97.

    Article  CAS  PubMed  Google Scholar 

  26. Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem. 1959;234(3):466–8.

    CAS  PubMed  Google Scholar 

  27. Ishida T, Iden DL, Allen TM. A combinatorial approach to producing sterically stabilized (stealth) immunoliposomal drugs. FEBS Lett. 1999;460(1):129–33.

    Article  CAS  PubMed  Google Scholar 

  28. Kastantin M, Ananthanarayanan B, Karmali P, Ruoslahti E, Tirrell M. Effect of the lipid chain melting transition on the stability of DSPE-PEG(2000) micelles. Langmuir. 2009;25(13):7279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heath TD, Macher BA, Papahadjopoulos D. Covalent attachment of immunoglobulins to liposomes via glycosphingolipids. Biochim Biophys Acta. 1981;640(1):66–81.

    Article  CAS  PubMed  Google Scholar 

  30. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107–12.

    Article  CAS  PubMed  Google Scholar 

  31. Holford NH, Sheiner LB. Kinetics of pharmacologic response. Pharmacol Ther. 1982;16(2):143–66.

    Article  CAS  PubMed  Google Scholar 

  32. D’Argenio DZ, Schumitzky A, Wang X. user’s guide: pharmacokinetic/pharmacodynamics systems analysis software. Biomedical simulations resource, Los Angeles. 2009.

  33. Lewis GD, Figari I, Fendly B, Wong WL, Carter P, Gorman C, et al. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol Immunother. 1993;37(4):255–63.

    Article  CAS  PubMed  Google Scholar 

  34. Seidel UJ, Schlegel P, Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front Immunol. 2013;4:76.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zitvogel L, Tesniere A, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of anticancer chemotherapy. Bull Acad Natl Med. 2008;192(7):1469–87. discussion 87-9

    PubMed  Google Scholar 

  36. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med. 2000;192(5):755–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kramer-Marek G, Kiesewetter DO, Capala J. Changes in HER2 expression in breast cancer xenografts after therapy can be quantified using PET and (18)F-labeled affibody molecules. J Nucl Med. 2009;50(7):1131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schlitt A, Jordan K, Vordermark D, Schwamborn J, Langer T, Thomssen C. Cardiotoxicity and oncological treatments. Dtsch Arztebl Int. 2014;111(10):161–8.

    PubMed  PubMed Central  Google Scholar 

  39. Martin FJ, Papahadjopoulos D. Irreversible coupling of immunoglobulin fragments to preformed vesicles. An improved method for liposome targeting. J Biol Chem. 1982;257(1):286–8.

    CAS  PubMed  Google Scholar 

  40. Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, et al. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res. 2003;63(12):3154–61.

    CAS  PubMed  Google Scholar 

  41. Marano N, Holowka D, Baird B. Bivalent binding of an anti-CD3 antibody to Jurkat cells induces association of the T cell receptor complex with the cytoskeleton. J Immunol. 1989;143(3):931–8.

    CAS  PubMed  Google Scholar 

  42. Monjas A, Alcover A, Alarcón B. Engaged and bystander T cell receptors are down-modulated by different endocytotic pathways. J Biol Chem. 2004;279(53):55376–84.

    Article  CAS  PubMed  Google Scholar 

  43. Landegren U, Andersson J, Wigzell H. Mechanism of T lymphocyte activation by OKT3 antibodies. A general model for T cell induction. Eur J Immunol. 1984;14(4):325–8.

    Article  CAS  PubMed  Google Scholar 

  44. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42(5):419–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihem Ait-Oudhia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidya, T., Straubinger, R.M. & Ait-Oudhia, S. Development and Evaluation of Tri-Functional Immunoliposomes for the Treatment of HER2 Positive Breast Cancer. Pharm Res 35, 95 (2018). https://doi.org/10.1007/s11095-018-2365-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2365-x

KEY WORDS

Navigation