Skip to main content

Advertisement

Log in

Organogel Nanoparticles as a New Way to Improve Oral Bioavailability of Poorly Soluble Compounds

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to evaluate organogel nanoparticles as a lipophilic vehicle to increase the oral bioavailability of poorly soluble compounds. Efavirenz (EFV), a Biopharmaceutical Classification System (BCS) Class II, was used as drug model.

Methods

Organogel nanoparticles loaded with EFV were formulated with sunflower oil, 12-hydroxystearic acid (HSA) and polyvinyl alcohol (PVA). Various parameters have been investigated in the current study such as (i) the release profile of organogel assessed by USP 4 cell flow dialysis, (ii) the impact of organogel on intestinal absorption, using Caco-2 cells as in vitro model and jejunum segments as ex vivo assay and (iii) the bioavailability of organogel following oral pharmacokinetic study.

Results

250–300 nm spherical particles with a final concentration of 4.75 mg/mL drug loading were obtained, corresponding to a thousand fold increase in EFV solubility, combined to a very high encapsulation efficiency (>99.8%). Due to rapid diffusion, drug was immediately released from the nanoparticles. The biopharmaceutical evaluation on ex vivo jejunum segments demonstrated an increased absorption of EFV from organogel nanoparticles compare to a native EFV suspension. In vitro assays combining Caco-2 cell cultures with TEM and confocal microscopy demonstrated passive diffusion, while paracellular integrity and endocytosis activity remain expelled. Oral pharmacokinetics of EFV organogel nanoparticles improve oral bioavailability (Fr: 249%) and quick absorption compared to EFV suspension.

Conclusion

Organogel nanoparticles increase the bioavailability of BCS Class II drugs. The main phenomena is simply oil transfer from the gelled particles through the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

EFV:

Efavirenz

NR:

Nile Red

PVA:

Polyvinyl alcohol

HAS:

Hydroxystearic acid

DLS:

Dynamic Light Scattering

TEM:

Transmission electron microscopy

DSC:

Differential scanning calorimetry

EE:

Encapsulation efficiency

SGF:

Simulated gastric fluid

SIF:

Simulated intestinal fluid

Tmax:

Time to maximum concentration

Cmax:

Maximum plasma concentration

SD:

Standard deviation

References

  1. Oprea TI. Current trends in lead discovery: are we looking for the appropriate properties? Mol Divers. 2000;5:199–208.

    Article  CAS  Google Scholar 

  2. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.

    Article  CAS  Google Scholar 

  3. Di L, Fish PV, Mano T. Bridging solubility between drug discovery and development. Drug Discov Today. 2012;17:486–95. https://doi.org/10.1016/j.drudis.2011.11.007.

    Article  CAS  PubMed  Google Scholar 

  4. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13:519–47. https://doi.org/10.1208/s12248-011-9290-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65:315–499. https://doi.org/10.1124/pr.112.005660.

    Article  CAS  PubMed  Google Scholar 

  6. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–53. https://doi.org/10.1016/j.apsb.2015.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48. https://doi.org/10.1038/nrd2197.

    Article  CAS  PubMed  Google Scholar 

  8. Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453:215–24. https://doi.org/10.1016/j.ijpharm.2013.03.054.

    Article  CAS  PubMed  Google Scholar 

  9. Kesisoglou F, Panmai S, Wu Y. Nanosizing — Oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59:631–44. https://doi.org/10.1016/j.addr.2007.05.003.

    Article  CAS  PubMed  Google Scholar 

  10. Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36:43–8. https://doi.org/10.1177/0192623307310946.

    Article  CAS  PubMed  Google Scholar 

  11. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366:170–84.

    Article  CAS  PubMed  Google Scholar 

  12. McClements DJ, Rao J. Food-grade Nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr. 2011;51:285–330. https://doi.org/10.1080/10408398.2011.559558.

    Article  CAS  PubMed  Google Scholar 

  13. Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interf Sci. 2004;108–109:303–18.

    Article  Google Scholar 

  14. Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.

    Article  PubMed  Google Scholar 

  15. Freitas C, Müller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur J Pharm Biopharm. 1999;47:125–32.

    Article  CAS  PubMed  Google Scholar 

  16. Das S, Ng WK, Tan RBH. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47:139–51.

    Article  CAS  PubMed  Google Scholar 

  17. Kirilov P, Lukyanova L, Franceschi-Messant S, Perier V, Perez E, Rico-Lattes I. A new type of colloidal dispersions based on nanoparticles of gelled oil. Colloids Surf Physicochem Eng Asp. 2008;328:1–7.

    Article  CAS  Google Scholar 

  18. Martin B, Brouillet F, Franceschi S, Perez E. Evaluation of Organogel nanoparticles as drug delivery system for lipophilic compounds. AAPS PharmSciTech. 2017;18:1261–9. https://doi.org/10.1208/s12249-016-0587-y.

    Article  CAS  PubMed  Google Scholar 

  19. European Pharmacopoeia, 8th ed., European Directorate for the Quality of Medicines & Healthcare, Council of Europe, Strasbourg, France, 2012.

  20. Garrait G, Jarrige JF, Blanquet S, Beyssac E, Cardot JM, Alric M. Gastrointestinal absorption and urinary excretion of trans -Cinnamic and p -Coumaric acids in rats. J Agric Food Chem. 2006;54:2944–50. https://doi.org/10.1021/jf053169a.

    Article  CAS  PubMed  Google Scholar 

  21. Pinto EC, Cabral LM, de Sousa VP. Development of a Discriminative Intrinsic Dissolution Method for Efavirenz. Dissolution Technol. 2014;21:31–40. https://doi.org/10.14227/DT210214P31.

    Article  CAS  Google Scholar 

  22. Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006;309:44–50. https://doi.org/10.1016/j.ijpharm.2005.10.044.

    Article  CAS  PubMed  Google Scholar 

  23. Küchler S, Abdel-Mottaleb M, Lamprecht A, Radowski MR, Haag R, Schäfer-Korting M. Influence of nanocarrier type and size on skin delivery of hydrophilic agents. Int J Pharm. 2009;377:169–72. https://doi.org/10.1016/j.ijpharm.2009.04.046.

    Article  CAS  PubMed  Google Scholar 

  24. Sun H, Chow EC, Liu S, Du Y, Pang KS. The Caco-2 cell monolayer: usefulness and limitations. Expert Opin Drug Metab Toxicol. 2008;4:395–411. https://doi.org/10.1517/17425255.4.4.395.

    Article  CAS  PubMed  Google Scholar 

  25. Mahmoudi M, Simchi A, Imani M. Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. J Phys Chem C. 2009;113:9573–80.

    Article  CAS  Google Scholar 

  26. Petersen S, Steiniger F, Fischer D, Fahr A, Bunjes H. The physical state of lipid nanoparticles influences their effect on in vitro cell viability. Eur J Pharm Biopharm. 2011;79:150–61. https://doi.org/10.1016/j.ejpb.2011.03.022.

    Article  CAS  PubMed  Google Scholar 

  27. Boudier A, Kirilov P, Franceschi-Messant S, Haouaria B, Hadioui L, Roques R, et al. Evaluation of biocompatible stabilised gelled soya bean oil nanoparticles as new hydrophobic reservoirs. J Microencapsul. 2010;27:682–92.

    Article  CAS  PubMed  Google Scholar 

  28. Chiappetta DA, Hocht C, Taira C, Sosnik A. Oral pharmacokinetics of the anti-HIV efavirenz encapsulated within polymeric micelles. Biomaterials. 2011;32:2379–87. https://doi.org/10.1016/j.biomaterials.2010.11.082.

    Article  CAS  PubMed  Google Scholar 

  29. Wagner JG, Nelson E. Per cent absorbed time plots derived from blood level and/or urinary excretion data. J Pharm Sci. 1963;52:610–1.

    Article  CAS  PubMed  Google Scholar 

  30. Bahal SM, Romansky JM, Alvarez FJ. Medium chain triglycerides as vehicle for palatable Oral liquids. Pharm Dev Technol. 2003;8:111–5.

    Article  CAS  PubMed  Google Scholar 

  31. Patel GV, Patel VB, Pathak A, Rajput SJ. Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, in vitro, in situ and in vivo evaluation. Drug Dev Ind Pharm. 2014;40:80–91. https://doi.org/10.3109/03639045.2012.746362.

    Article  CAS  PubMed  Google Scholar 

  32. Jain S, Sharma JM, Agrawal AK, Mahajan RR. Surface stabilized Efavirenz nanoparticles for Oral bioavailability enhancement. J Biomed Nanotechnol. 2013;9:1862–74. https://doi.org/10.1166/jbn.2013.1683.

    Article  CAS  PubMed  Google Scholar 

  33. Avachat AM, Parpani SS. Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz. Colloids Surf B Biointerfaces. 2015;126:87–97. https://doi.org/10.1016/j.colsurfb.2014.12.014.

    Article  CAS  PubMed  Google Scholar 

  34. Makwana V, Jain R, Patel K, Nivsarkar M, Joshi A. Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm. 2015;495:439–46. https://doi.org/10.1016/j.ijpharm.2015.09.014.

    Article  CAS  PubMed  Google Scholar 

  35. Chiappetta DA, Hocht C, Taira C, Sosnik A. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability. Nanomed. 2010;5:11–23. https://doi.org/10.2217/nnm.09.90.

    Article  CAS  Google Scholar 

  36. Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci. 2013;8:1–10. https://doi.org/10.1016/j.ajps.2013.07.001.

    Article  CAS  Google Scholar 

  37. S. Snipstad, S. Westrøm, Y. Mørch, M. Afadzi, A. K. A. Aslund C . De Lange Davies, Contact-mediated intracellular delivery of hydrophobic drugs from polymeric nanoparticles, Cancer Nanotechnol. 5 (2014) 1.

  38. Klymchenko AS, Roger E, Anton N, Anton H, Shulov I, Vermot J, et al. Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets. RSC Adv. 2012;2:11876–86. https://doi.org/10.1039/c2ra21544f.

    Article  CAS  PubMed  Google Scholar 

  39. Hofmann D, Messerschmidt C, Bannwarth MB, Landfester K, Mailänder V. Drug delivery without nanoparticle uptake: delivery by a kiss-and-run mechanism on the cell membrane. Chem Commun. 2014;50:1369–71. https://doi.org/10.1039/C3CC48130A.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Beyssac.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, B., Garrait, G., Beyssac, E. et al. Organogel Nanoparticles as a New Way to Improve Oral Bioavailability of Poorly Soluble Compounds. Pharm Res 37, 92 (2020). https://doi.org/10.1007/s11095-020-02808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02808-w

Keywords

Navigation