Skip to main content
Log in

Jasmonate responsive transcription factor WsMYC2 regulates the biosynthesis of triterpenoid withanolides and phytosterol via key pathway genes in Withania somnifera (L.) Dunal

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Functional characterization of WsMYC2 via artificial microRNA mediated silencing and transient over-expression displayed significant regulatory role vis-à-vis withanolides and stigmasterol biosyntheses in Withania somnifera. Further, metabolic intensification corroborated well with higher expression levels of putative pathway genes. Additionally, copious expression of WsMYC2 in response to exogenous elicitors resulted in enhanced withanolides production.

Abstract

Withania somnifera, a high value multipurpose medicinal plant, is a rich reservoir of structurally diverse and biologically active triterpenoids known as withanolides. W. somnifera has been extensively pursued vis-à-vis pharmacological and chemical studies. Nonetheless, there exists fragmentary knowledge regarding the metabolic pathway and the regulatory aspects of withanolides biosynthesis. Against this backdrop, a jasmonate-responsive MYC2 transcription factor was identified and functionally characterized from W. somnifera. In planta transient over-expression of WsMYC2 showed significant enhancement of mRNA transcript levels which corroborated well with the enhanced content of withanolides and stigmasterol. Further, a comparative analysis of expression levels of some of the genes of triterpenoid pathway viz. WsCAS, WsCYP85A, WsCYP90B and WsCYP710A in corroboration with the over-expression and silencing of WsMYC2 suggested its positive influence on their regulation. These corroboratory approaches suggest that WsMYC2 has cascading effect on over-expression of multiple pathway genes leading to the increased triterpenoid biosynthesis in infiltered plants. Further, the functional validation of WsMYC2 was carried out by artificial micro-RNA mediated silencing. It resulted in significant reduction of withanolides and stigmasterol levels, indicative of crucial role of WsMYC2 in the regulation of their biosyntheses. Taken together, these non-complementary approaches provided unambiguous understanding of the regulatory role of WsMYC2 in context to withanolides and stigmasterol biosyntheses. Furthermore, the upstream promoter of WsMYC2 presented several cis-regulatory elements primarily related to phytohormone responsiveness. WsMYC2 displayed inducible nature in response to MeJA. It had substantial influence on the higher expression of WsMYC2 which was in consonance with enhanced accumulation of withanolides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad N, Haiyan L, Xiuming L (2018) Cytochrome P450 s: blueprints for potential applications in plants. J Plant Biochem Physiol 6:204

    Google Scholar 

  • Bhat WW et al (2012) Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene 499:25–36

    Article  CAS  PubMed  Google Scholar 

  • Boke H, Ozhuner E, Turktas M, Parmaksiz I, Ozcan S, Unver T (2015) Regulation of the alkaloid biosynthesis by miRNA in opium poppy. Plant Biotechnol J 13:409–420

    Article  CAS  PubMed  Google Scholar 

  • Boter M, Ruíz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cárdenas et al (2016) GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat Commun 7:10654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celniker et al (2013) ConSurf: using evolutionary data to raise testable hypotheses about protein function. Isr J Chem 53:199–206

    Article  CAS  Google Scholar 

  • Cheng Z, Sun L, Qi T, Zhang B, Peng W, Liu Y, Xie D (2011) The bHLH transcription factor MYC3 interacts with the Jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis. Mol Plant 4:279–288

    Article  CAS  PubMed  Google Scholar 

  • Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–447

    Article  CAS  PubMed  Google Scholar 

  • Dhar et al (2006) Phytochemical and genetic analysis in selected chemotypes of Withania somnifera. Phytochemistry 67:2269–2276

    Article  CAS  PubMed  Google Scholar 

  • Dhar N et al (2014) Cloning and functional characterization of three branch point oxidosqualene cyclases from Withania somnifera (L.) dunal. J Biol Chem 289(24):17249–17267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhar N, Razdan S, Rana S, Bhat WW, Vishwakarma R, Lattoo SK (2015) A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L.) dunal: prospects and perspectives for pathway engineering. Front Plant Science 6:1031

    Article  Google Scholar 

  • Dombrecht et al (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113

    Article  CAS  Google Scholar 

  • Fernández-Calvo P et al (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23(2):701–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci USA 111:2367–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita et al (2006) Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols. Plant J 45:765–774

    Article  CAS  PubMed  Google Scholar 

  • Gasparis S, Kała M, Przyborowski M, Orczyk W, Nadolska-Orczyk A et al (2017) Artificial MicroRNA-based specific gene silencing of grain hardness genes in polyploid cereals appeared to be not stable over transgenic plant generations. Front Plant Sci. https://doi.org/10.3389/fpls.2016.02017

    Article  PubMed  PubMed Central  Google Scholar 

  • Gas-Pascual E, Berna A, Bach TJ, Schaller H (2014) Plant oxidosqualene metabolism: cycloartenol synthase–dependent sterol biosynthesis in Nicotiana benthamiana. PLoS ONE 9:e109156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Griebel T, Zeier J (2010) A role for β-sitosterol to stigmasterol conversion in plant– pathogen interactions. Plant J 63:254–268

    Article  CAS  PubMed  Google Scholar 

  • Gupta P et al (2015) Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera. Sci Rep 5:18611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahm ER, Moura MB, Kelley EE, Van Houten B, Shiva S, Singh SV (2011) Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS ONE 6:e23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao D, Gu X, Xiao P, Peng Y (2013) Chemical and biological research of Clematis medicinal resources. Chin Sci Bull 58:1120–1129

    Article  CAS  Google Scholar 

  • Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itkin M et al (2013) Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341(6142):175–179

    Article  CAS  PubMed  Google Scholar 

  • Kaileh M et al (2007) Withaferin A strongly elicits IκB kinase β hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282:4253–4264

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, De Meyer B, Hilson P (2005) Modular cloning in plant cells. Trends Plant Sci 10:103–105

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant gateway vectors. Plant Physiol 145:1144–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann K, Pajoro A, Angenent GC (2010) Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 11:830

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirson I, Glotter E, Lavie D, Abraham A (1971) Constituents of Withania somnifera Dun. Part XII. The withanolides of an indian chemotype. J Chem Soc C 1971:2032–2044

    Article  Google Scholar 

  • Koduru S, Kumar R, Srinivasan S, Evers MB, Damodaran C (2010) Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther 9(1):202–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lattoo SK, Dhar RS, Khan S, Bamotra S, Dhar AK (2007) Temporal sexual maturation and incremental staminal movement encourages mixed mating in Withania somnifera - an insurance for reproductive success. Curr Sci 92:1390–1399

    Google Scholar 

  • Laurie-Berry N, Joardar V, Street IH, Kunkel BN (2006) The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol Plant Microbe Interact 19:789–800

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J. 31:777–786

    Article  CAS  PubMed  Google Scholar 

  • Mao G, Seebeck T, Schrenker D, Yu O (2013) CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana. BMC Plant Biol 13:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masferrer A et al (2002) Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase (FPS1S) in transgenic Arabidopsis induces a cell death/senescence-like response and reduced cytokinin levels. Plant J 30:123–132

    Article  CAS  PubMed  Google Scholar 

  • Mertens J, Pollier J, Bossche RV, Lopez-Vidriero I, Franco-Zorrilla JM, Goossens A (2016) The bHLH transcription factors TSAR1 and TSAR2 regulate triterpene saponin biosynthesis in Medicago truncatula. Plant Physiol 15:01645

    Google Scholar 

  • Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 5:334–346

    CAS  PubMed  Google Scholar 

  • Mishra S, Bansal S, Mishra B, Sangwan RS, Jadaun JS, Sangwan NS (2016) RNAi and homologous over-expression based functional approaches reveal triterpenoid synthase gene-cycloartenol synthase is involved in downstream withanolide biosynthesis in Withania somnifera. PLoS ONE 11:e0149691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu QW, lin SS, Rayes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transient Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Figureueroa P, Browse J (2011) Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J Exp Bot 62:2143–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey V, Ansari WA, Misra P, Atri N (2017) Withania somnifera: advances and implementation of molecular and tissue culture techniques to enhance its application. Front Plant Sci 8:1390

    Article  PubMed  PubMed Central  Google Scholar 

  • Patra B, Schluttenhofer C, Wu Y, Pattanaik S (1829) Yuan L (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim et Biophys Acta (BBA) 11:1236–1247

    Google Scholar 

  • Pérez-España VH, Sánchez-León N, Vielle-Calzada JP (2011) CYP85A1 is required for the initiation of female gametogenesis in Arabidopsis thaliana. Plant signal Behav 6:321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana S, Lattoo SK, Dhar N, Razdan S, Bhat WW, Dhar RS, Vishwakarma R (2013) NADPH-cytochrome P450 reductase: molecular cloning and functional characterization of two paralogs from Withania somnifera (L.) dunal. PLoS ONE 8(2):e57068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana S, Bhat WW, Dhar N, Pandith SA, Razdan S, Vishwakarma R, Lattoo SK (2014) Molecular characterization of two A-type P450 s, WsCYP98A and WsCYP76A from Withania somnifera (L.) Dunal: expression analysis and withanolide accumulation in response to exogenous elicitations. BMC Biotechnol 14(1):89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rather GA, Sharma A, Pandith SA, Kaul V, Nandi U, Misra P, Lattoo SK (2018) De novo transcriptome analyses reveals putative pathway genes involved in biosynthesis and regulation of camptothecin in Nothapodytes nimmoniana (Graham) Mabb. Plant Mol Biol 96:197–215

    Article  CAS  PubMed  Google Scholar 

  • Rayko E, Maumus F, Maheswari U, Jabbari K, Bowler C (2010) Transcription factor families inferred from genome sequences of photosynthetic stramenopiles. New Phytol 188:52–66

    Article  CAS  PubMed  Google Scholar 

  • Razdan S et al (2013) Molecular characterization and promoter analysis of squalene epoxidase gene from Withania somnifera (L.) Dunal. Mol Biol Rep 40:905–916

    Article  CAS  PubMed  Google Scholar 

  • Sawai S, Saito K (2011) Triterpenoid biosynthesis and engineering in plants. Front Plant Sci 2:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehgal N et al (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA 109:3510–3515

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafrin F, Das SS, Sanan-Mishra N, Khan H (2015) Artificial miRNA-mediated down-regulation of two monolignoid biosynthetic genes (C3H and F5H) cause reduction in lignin content in jute. Plant Mol Biol 89:511–527

    Article  CAS  PubMed  Google Scholar 

  • Shen et al (2016) The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytol 210:1269–1281

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Kumar SR, Dwivedi V, Rai A, Pal S, Shasany AK, Nagegowda DA (2017) A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of stigmasterol and defense pathways. New Phytol 215:1115–1131

    Article  CAS  PubMed  Google Scholar 

  • Song et al (2014) Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26:263–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki et al (2004) Loss of function of 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels. Plant J 37:750–761

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thagun et al (2016) Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant Cell Physiol 57:961–975

    Article  CAS  PubMed  Google Scholar 

  • Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A (2014) Triterpene biosynthesis in plants. Ann Rev Plant Biol 65:225–257

    Article  CAS  Google Scholar 

  • Tiwari M, Sharma D, Trivedi PK (2014) Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol 86:1–18

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S et al (2017) Transcription factor repertoire in Ashwagandha (Withania somnifera) through analytics of transcriptomic resources: insights into regulation of development and withanolide metabolism. Sci Rep 7:16649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy et al (2012) Characterization and functional validation of tobacco PLC Delta for abiotic stress tolerance. Plant Mol Biol Rep 30:488–497

    Article  CAS  Google Scholar 

  • Vincken JP, Heng L, de Groot A, Gruppen H (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68:275–297

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Lewis RS, Shi J, Song Z, Gao Y, Li W, Chen H, Qu R (2015) Genetic factors for enhancement of nicotine levels in cultivated tobacco. Sci Rep 5:17360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wild et al (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY (2012) Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol 54:703–712

    Article  CAS  PubMed  Google Scholar 

  • Yendo CA et al (2014) Biosynthesis of plant triterpenoid saponins: genes, enzymes and their regulation. Mini-Rev Org Chem 11:292–306

    Article  CAS  Google Scholar 

  • Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua (L.). Mol Plant 5(2):353–365

    Article  CAS  PubMed  Google Scholar 

  • Zhang et al (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 67:61–71

    Article  CAS  PubMed  Google Scholar 

  • Zhang HB, Bokowiec MT, Rushton PJ, Han SC, Timko MP (2012) Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis. Mol Plant 5:73–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Prabhu Dutt and Amit Kumar, CSIR-IIIM, Jammu for facilitating HPLC. AS is thankful to DST-INSPIRE for providing Senior Research Fellowship. GAR thankfully acknowledges the UGC Senior Research Fellowship. This manuscript represents Institutional Communication No. IIIM/2184/2019.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: SKL MKD; Performed the experiments: AS, GAR; Analyzed the data: AS, SKL, MKD, PM. Contributed reagents/materials/analysis tools: SKL, PM; Original draft was prepared by AS. SKL,  PM and MKD improved the content and edited the manuscript.

Corresponding authors

Correspondence to Manoj K. Dhar or Surrinder K. Lattoo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accession number

WsMYC2 was submitted to NCBI GenBank under accession number MG434696.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13882 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Rather, G.A., Misra, P. et al. Jasmonate responsive transcription factor WsMYC2 regulates the biosynthesis of triterpenoid withanolides and phytosterol via key pathway genes in Withania somnifera (L.) Dunal. Plant Mol Biol 100, 543–560 (2019). https://doi.org/10.1007/s11103-019-00880-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00880-4

Keywords

Navigation