Skip to main content

Advertisement

Log in

Shift in soil–plant nitrogen dynamics of an alpine–nival ecotone

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

We investigated the nitrogen (N) dynamics of an alpine–nival ecotone on Mt. Schrankogel, Tyrol, Austria, in relation to temperature. Natural abundance of 15N was used as a tool to elucidate differences in N cycling along an altitudinal transect ranging from 2,906 to 3,079 m, corresponding to a gradient in mean annual temperature of 2.4 °C. The amount of total soil N, of plant available N and soil C/N ratio decreased significantly with increasing altitude, whereas soil pH increased. Soil δ 15N decreased with increasing altitude from +2.2 to −2.1‰ and δ 15N of plant tissues (roots and leaves) decreased from −3.7 to −5.5‰. The large shift in soil δ 15N of 4.3‰ from the lowest to the highest site suggested substantial differences in N cycling in alpine and nival ecosystems in the alpine nival ecotone investigated. We concluded that N cycling at the alpine–nival ecotone is likely to be controlled by various factors: temperature, soil age and development, atmospheric N deposition and plant competition. Our results furthermore demonstrate that the alpine–nival ecotone may serve as a sensitive indicator of global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adger N, Aggarwal P, Agrawala S, Alcamo J, Allali A, Anisimov O, Arnell N, Boko M, Canziani O, Carter T, Casassa G, Confalonieri U, Cruz RV and al. e (2007) IPCC 2007 climate change 2007: impacts, adaptation and vulnerability. Working Group II Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Cambridge University Press. p 23

  • Amato M, Ladd JN (1988) Assay for microbial biomass based on ninhydrin-reactive nitrogen in extracts of fumigated soil. Soil Biol Biochem 20:107–114

    Article  CAS  Google Scholar 

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17, Art. no. 1031

  • Atkin OK, Cummins WR (1994) The effect of root temperature on the induction of nitrate reductase activities and nitrogen uptake rates in Arctic plant species. Plant Soil 159:187–197

    Article  CAS  Google Scholar 

  • Barrett JE, Burke IC (2000) Potential nitrogen immobilization in grassland soils across a soil organic matter gradient. Soil Biol Biochem 32:1707–1716

    Article  CAS  Google Scholar 

  • Berendse F, Lammerts EJ, Olff H (1998) Soil organic matter accumulation and its implications for nitrogen mineralization and plant species composition during succession in coastal dune slacks. Plant Ecol 137:71–78

    Article  Google Scholar 

  • Bowman WD, Steltzer H, Rosenstiel TN, Cleveland CC, Meier CL (2004) Litter effects of two co-occurring alpine species on plant growth, microbial activity and immobilization of nitrogen. Oikos 104:336–344

    Article  Google Scholar 

  • Brenner DL, Amundson R, Baisden WT, Kendall C, Harden J (2001) Soil N and 15N variation with time in a California annual grassland ecosystem. Geochim Cosmochim Acta 65:4171–4186

    Article  CAS  Google Scholar 

  • Brooker R, Kikvidze Z, Pugnaire FI, Callaway RM, Choler P, Lortie CJ, Michalet R (2005) The importance of importance. Oikos 111:208–208

    Article  Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  PubMed  CAS  Google Scholar 

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308

    Google Scholar 

  • Cox JA, Whelan RJ (2000) Soil development of an artificial soil mix: nutrient dynamics, plant growth, and initial physical changes. Aust J Soil Res 38:465–477

    Article  Google Scholar 

  • de Kovel CGF, Van Mierlo A, Wilms YJO, Berendse F (2000) Carbon and nitrogen in soil and vegetation at sites differing in successional age. Plant Ecol 149:43–50

    Article  Google Scholar 

  • Dullinger S (1998) Vegetation des Schrankogel, Stubaier Alpen. University of Vienna, Vienna

    Google Scholar 

  • Evans RD, Bloom AJ, Sukrapanna SS, Ehleringer JR (1996) Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition. Plant Cell Environ 19:1317–1323

    Google Scholar 

  • Garnett TP, Smethurst PJ (1999) Ammonium and nitrate uptake by Eucalyptus nitens: effects of pH and temperature. Plant Soil 214:133–140

    Article  CAS  Google Scholar 

  • Gottfried M, Pauli H, Grabherr G (1998) Prediction of vegetation patterns at the limits of plant life: a new view of the alpine–nival ecotone. Arct Alp Res 30:207–221

    Article  Google Scholar 

  • Gottfried M, Pauli H, Reiter K, Grabherr G (1999) A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate warming. Divers Distrib 5:241–251

    Article  Google Scholar 

  • Gottfried M, Pauli H, Reiter K, Grabherr G (2002) Potential effects of climate change on apine and nival plants in the Alps. In: Körner C, Spehn EM (eds) Mountain biodiversity: a global assessment. Parthenon Publishing, London, New York, pp 213–223

    Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448–448

    Article  Google Scholar 

  • Grogan P, Chapin FS (2000) Initial effects of experimental warming on above- and belowground components of net ecosystem CO2 exchange in arctic tundra. Oecologia 125:512–520

    Article  Google Scholar 

  • Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ 15:965–985

    Article  CAS  Google Scholar 

  • Hartley AE, Neill C, Melillo JM, Crabtree R, Bowles FP (1999) Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf shrub heath. Oikos 86:331–343

    Article  Google Scholar 

  • Haselwandter K, Read DJ (1980) Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57–62

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Högberg P (1997) Tansley review No 95 – 15N natural abundance in soil–plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Jacot KA, Luscher A, Nosberger J, Hartwig UA (2000a) The relative contribution of symbiotic N2 fixation and other nitrogen sources to grassland ecosystems along an altitudinal gradient in the Alps. Plant Soil 225:201–211

    Article  CAS  Google Scholar 

  • Jacot KA, Luscher A, Nosberger J, Hartwig UA (2000b) Symbiotic N2 fixation of various legume species along an altitudinal gradient in the Swiss Alps. Soil Biol Biochem 32:1043–1052

    Article  CAS  Google Scholar 

  • Jonasson S, Havstrom M, Jensen M, Callaghan TV (1993) In-situ mineralization of nitrogen and phosphorus of Arctic soils after perturbations simulating climate change. Oecologia 95:179–186

    Article  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV (1999) Responses in microbes and plants to changed temperature, nutrient, and light regimes in the arctic. Ecology 80:1828–1843

    Article  Google Scholar 

  • Jonasson S, Castro J, Michelsen A (2004) Litter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in arctic mesocosms. Soil Biol Biochem 36:1129–1139

    Article  CAS  Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72

    Article  CAS  Google Scholar 

  • Khan SA, Mulvaney RL, Brooks PD (1998) Diffusion methods for automated nitrogen-15 analysis using acidified disks. Soil Sci Soc Am J 62:406–412

    Article  CAS  Google Scholar 

  • Kikvidze Z, Pugnaire FI, Brooker RW, Choler P, Lortie CJ, Michalet R, Callaway RM (2005) Linking patterns and processes in alpine plant communities: a global study. Ecology 86:1395–1400

    Article  Google Scholar 

  • Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13:1–6

    Article  Google Scholar 

  • Kramer MG, Sollins P, Sletten RS, Swart PK (2003) N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 84:2021–2025

    Article  Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • McKee KL, Feller IC, Popp M, Wanek W (2002) Mangrove isotopic (δ 15 N and δ 13 C) fractionation across a nitrogen vs. phosphorus limitation gradient. Ecology 83:1065–1075

    Google Scholar 

  • Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (2007) IPCC, 2007. Climate change 2007: mitigation. Contribution of Working group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, New York, p 35

    Google Scholar 

  • Michelsen A, Jonasson S, Sleep D, Havstrom M, Callaghan TV (1996) Shoot biomass, . δ 13. C, nitrogen and chlorophyll responses of two arctic dwarf shrubs to in situ shading, nutrient application and warming simulating climatic change. Oecologia 105:1–12

    Article  Google Scholar 

  • Michelsen A, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418

    Article  Google Scholar 

  • Moiseev PA, Shiyatov SG (2003) Vegetation dynamics at the tree line ecotone in the Ural Highlands, Russia. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin Heidelberg New York, pp 423–435

    Google Scholar 

  • Morecroft MD, Marrs RH, Woodward FI (1992) Altitudinal and seasonal trends in soil nitrogen mineralization rate in the Scottish Highlands. J Ecol 80:49–56

    Article  Google Scholar 

  • Munroe JS, Bockheim JG (2001) Soil development in low-arctic tundra of the northern Brooks Range, Alaska, USA. Arct Antarct Alp Res 33:78–87

    Article  Google Scholar 

  • Nadelhoffer KJ, Fry B (1994) Nitrogen isotope studies in forest ecosystems. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, Oxford

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in six Arctic soils. Ecology 72:242–253

    Article  Google Scholar 

  • Patzelt J (1976) Geologische Kartierung des Ötztalkristallins im Gebiet südlich der Amberger Hütte. Diplomkartierung Universität Achen. University of Aachen, Aachen

  • Pauli H, Gottfried M, Grabherr G (1999) Vascular plant distribution patterns at the low-temperature limits of plant life – the alpine–nival ecotone of Mount Schrankogel (Tyrol, Austria). Phytocoenologia 29:297–325

    Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (2001) High summits of the Alps in a changing climate. The oldest observation series on high mountain plant diversity in Europe. In: Walther G-R, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change: adapted behaviour and shifting species ranges. Kluwer Academic Publisher, New York, pp 139–149

    Google Scholar 

  • Pauli H, Gottfried M, Reier K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA*master site Schrankogel, Tyrol, Austria. Glob Chang Biol 13:147–156

    Article  Google Scholar 

  • Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994) Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol Appl 4:617–625

    Article  Google Scholar 

  • Schinner F (1982) Soil microbial activities and litter decomposition related to altitude. Plant Soil 65:87–94

    Article  Google Scholar 

  • Schmidt IK, Jonasson S, Shaver GR, Michelsen A, Nordin A (2002) Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant Soil 242:93–106

    Article  CAS  Google Scholar 

  • Shaw MR, Harte J (2001) Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone. Glob Chang Biol 7:193–210

    Article  Google Scholar 

  • Steltzer H, Bowman WD (1998) Differential influence of plant species on soil nitrogen transformations within moist meadow Alpine tundra. Ecosystems 1:464–474

    Article  CAS  Google Scholar 

  • Stuiver M, Polach HA (1977) Reporting of 14C data – discussion. Radiocarbon 19:355–363

    Google Scholar 

  • Sveinbjornsson B, Davis J, Abadie W, Butler A (1995) Soil carbon and nitrogen mineralization at different elevations in the Chugach Mountains of South–Central Alaska, U.S.A. Arct Alp Res 27:29–37

    Article  Google Scholar 

  • Temperton VM, Mwangi PN, Scherer-Lorenzen M, Schmid B, Buchmann N (2007) Positive interactions between nitrogen-fixing legumes and four different neighbouring species in a biodiversity experiment. Oecologia 151:190–205

    Article  PubMed  Google Scholar 

  • van Heerwaarden LM, Toet S, Aerts R (2003) Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. J Ecol 91:1060–1070

    Article  Google Scholar 

  • Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393–404

    CAS  Google Scholar 

  • Virtanen R (2003) The high mountain vegetation of the Scandes. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin, pp 31–38

    Google Scholar 

  • Volder A, Bliss LC, Lambers H (2000) The influence of temperature and nitrogen source on growth and nitrogen uptake of two polar-desert species, Saxifraga caespitosa and Cerastium alpinum. Plant Soil 227:139–148

    Article  CAS  Google Scholar 

  • Walther GR, Beissner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548

    Article  Google Scholar 

  • Watson RT, Zinyowera MC, Moss RH, Dokken DJ (1997) IPCC special report. The regional impacts of climate change: an assessment of vulnerability. Cambridge University Press, Cambridge, U.K., p 527

    Google Scholar 

Download references

Acknowledgements

We are highly grateful to Alexandra Kaniak and Angelika Kaufmann for help in the field and Tina Bell and Ansgar Kahmen for comments on earlier versions of the manuscript. We further acknowledge the University of Vienna for travel funds to A. Richter and W. Wanek.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Richter.

Additional information

Responsible Editor: Euan James

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, E., Wanek, W., Gottfried, M. et al. Shift in soil–plant nitrogen dynamics of an alpine–nival ecotone. Plant Soil 301, 65–76 (2007). https://doi.org/10.1007/s11104-007-9422-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9422-2

Keywords

Navigation