Skip to main content
Log in

In vivo speciation of zinc in Noccaea caerulescens in response to nitrogen form and zinc exposure

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Nitrate has been shown to enhance Zn hyperaccumulation in the shoots of Noccaea caerulescens (formerly Thlaspi caerulescens) (Prayon); however, the mechanisms beyond the effect of nitrogen form are unknown. This study used synchrotron X-ray absorption near-edge spectroscopy (XANES) on alive and intact plants at room temperature to examine whether enhanced Zn hyperaccumulation in nitrate-fed plants was associated with differences in Zn speciation, and to correlate Zn species with mechanisms of Zn uptake, translocation and hyperaccumulation. The higher Zn concentration in plants supplied with nitrate compared to ammonium, or with high Zn exposure (300 μΜ), was not due to differences in Zn speciation. The importance of carboxylates for Zn hyperaccumulation in the shoots was supported by a predominance of Zn-malate or Zn-citrate. Zinc-phytate was detected for the first time in this species and may assist Zn-tolerance in the roots. The feasible presence of Zn-histidine in the roots but not in the xylem sap suggests a mechanism for Zn binding and non-toxic transport through the cytoplasm and release of aqueous Zn into the xylem vessels. Zinc was translocated in the xylem as Zn-malate and weakly complexed or aqueous Zn forms. Zinc speciation in roots, shoots and xylem did not differ between nitrate- and ammonium-fed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen S, Raven JA (1987) Intracellular pH regulation in Ricinus communis grown with ammonium or nitrate as N source: the role of long distance transport. J Exp Bot 38:580–596

    Article  CAS  Google Scholar 

  • Angel R, Tamim NM, Applegate TJ, Dhandu AS, Ellestad LE (2002) Phytic acid chemistry: influence on phytin-phosphorus availability and phytase efficiency. J Appl Poul Res 11:471–480

    CAS  Google Scholar 

  • Bacquart T, Devès G, Carmona A, Tucoulou R, Bohic S, Ortega R (2007) Subcellular speciation analysis of trace element oxidation states using synchrotron radiation micro-X-ray absorption near-edge structure. Anal Chem 79:7353–7359

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Barthes L, Deléens E, Bousser A, Hoarau J, Prioul JL (1996) Xylem exudation is related to nitrate assimilation pathway in detopped maize seedlings: use of nitrate reductase and glutamine synthetase inhibitors as tools. J Exp Bot 47:485–495

    Article  CAS  Google Scholar 

  • Bennett FA, Tyler EK, Brooks RR, Gregg PEH, Stewart RB (1998) Fertilisation of hyperaccumulators to enhance their potential for phytoremediation and phytomining. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, London, pp 249–259

    Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133

    Article  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Bulska E, Wysocka IA, Wierzbicka MH, Proost K, Janssens K, Falkenberg G (2006) In vivo investigation of the distribution and the local speciation of selenium in Allium cepa L. by means of microscopic X-ray absorption near-edge structure spectroscopy and confocal microscopic X-ray fluorescence analysis. Anal Chem 78:7616–7624

    Article  PubMed  Google Scholar 

  • Callahan D, Kolev SD, O’Hair AJ, Salt DE, Baker AJM (2007) Relationships of nicotianamine and other amino acids with nickel, zinc and iron in Thlaspi hyperaccumulators. New Phytol 176:836–848

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT, Hanson JB (1986) Proton fluxes and the activity of a stelar proton pump in onion roots. J Exp Bot 37:1136–1150

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725

    Article  PubMed  CAS  Google Scholar 

  • Crea F, De Stefano C, Milea D, Sammartano S (2009) Speciation of phytate ion in aqueous solution. Thermodynamic parameters for Zn(II) sequestration at different ionic strengths and temperatures. J Solution Chem 38:115–134

    Article  CAS  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942

    Article  PubMed  Google Scholar 

  • Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian L (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424–1430

    Article  CAS  Google Scholar 

  • Eren E, Kennedy DC, Maroney MJ, Argüello JM (2006) A novel regulatory metal binding domain is present in the C terminus of Arabidopsis Zn2+−ATPase HMA2. J Biol Chem 281:33881

    Article  PubMed  CAS  Google Scholar 

  • Farré EM, Tiessen A, Roessner U, Geigenberger P, Trethewey RN, Willmitzer L (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiol 127:685–700

    Article  PubMed  Google Scholar 

  • Foyer CH, Parry MAJ, Noctor G (2003) Markers and signals associated with nitrogen assimilation in higher plants. J Exp Bot 54:585–593

    Article  PubMed  CAS  Google Scholar 

  • Frérot H, Faucon MP, Willems G, Godé C, Courseaux A, Darracq A, Verbruggen N, Saumitou-Laprade P (2010) Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL x environment interactions. New Phytol 187:355–367

    Article  PubMed  Google Scholar 

  • Frey B, Keller C, Zierold K (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675–687

    Article  CAS  Google Scholar 

  • Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270

    Article  PubMed  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  PubMed  CAS  Google Scholar 

  • Howells MR, Hitchcock AP, Jacobsen CJ (2009) Introduction: special issue on radiation damage. J Electron Spectrosc Relat Phenomena 170:1–3

    Article  CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in arabidopsis. Plant Cell 16:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    Article  PubMed  CAS  Google Scholar 

  • Ingrouille MJ, Smirnoff N (1986) Thlaspi caerulescens J. & C. Presl. (T. alpestre L.) in Britain. New Phytol 102:219–233

    Article  Google Scholar 

  • Kelly DA, Andrews JC, DeWitt JG (2002) An X-ray absorption spectroscopic investigation of the nature of the zinc complex accumulated in Datura innoxia plant tissue culture. Microchem J 71:231–245

    Article  CAS  Google Scholar 

  • Klementiev K (2001) XANES dactyloscope for Windows. freeware www.desy.de/~klmn/xanda.html.

  • Kochian LV (1991) Mechanisms of micronutrient uptake and translocation in plants. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture. Soil Science Society of America, Wisconsin, pp 229–296

    Google Scholar 

  • Koninsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, Toronto, p v-673

    Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  PubMed  Google Scholar 

  • Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757

    Article  PubMed  Google Scholar 

  • Kurkjdian A, Guern J (1989) Intracellular pH: measurement and importance in cell activity. Annu Rev Plant Physiol 40:271–303

    Article  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883

    Article  PubMed  CAS  Google Scholar 

  • Lau D, Kappen P, Strohschnieder M, Brack N, Pigram PJ (2008) Characterization of green copper phase pigments in Egyptian artifacts with X-ray absorption spectroscopy and principal components analysis. Spectrochim Acta Part B Spectrosc 63:1283–1289

    Article  Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26

    Article  CAS  Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry. Worth, New York

    Google Scholar 

  • Leitenmaier B, Stemke A, Meyer-Klaucke W, Küpper H (2009) Characterisation of TcHMA4, a Cd/Zn ATPase purified from roots of the hyperaccumulator plant Thlaspi caerulescens. J Biol Inorg Chem 14:S165–168

    Article  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Marquès L, Cossegal M, Bodin S, Czernic P, Lebrun M (2004) Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens. New Phytol 164:289–295

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, 889

    Google Scholar 

  • Martell AE, Hancock RD (1996) Metal complexes in aqueous solutions. Plenum, New York, 253

    Google Scholar 

  • Monsant AC, Tang C, Baker AJM (2008) The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens. Chemosphere 73:635–642

    Article  PubMed  CAS  Google Scholar 

  • Monsant AC, Wang Y, Tang C (2010) Nitrate nutrition enhances zinc hyperaccumulation in Noccaea caerulescens (Prayon). Plant Soil 336:391–401

    Article  CAS  Google Scholar 

  • Osmond CB, Laties GH (1969) Compartmentation of malate in relation to ion absorption in Beet. Plant Physiol 44:7–14

    Article  PubMed  CAS  Google Scholar 

  • Pahlsson AMB (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut 47:287–319

    Article  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    Article  PubMed  CAS  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960

    Article  PubMed  CAS  Google Scholar 

  • Prietzel J, Thieme J, Eusterhues K, Eichert D (2007) Iron speciation in soils and soil aggregates by synchtrotron-based X-ray microspectroscopy (XANES, mu-XANES). Eur J Soil Sci 58:1027–1041

    Article  CAS  Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchr Rad 12:537–541

    Article  CAS  Google Scholar 

  • Raven JA (1986) Biochemical disposal of excess H+ in growing plants? New Phytol 104:175–206

    Article  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2002) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    Article  Google Scholar 

  • Rose J, Moulin I, Masion A, Bertsch PM, Wiesner MR, Bottero J-Y, Mosnier F, Haehnel C (2001) X-ray absorption spectroscopy study of immobilization processes for heavy metals in calcium silicate hydrates. 2. Zinc. Langmuir 17:3658–3665

    Article  CAS  Google Scholar 

  • Ryan CA, Walker-Simmons M (1983) Plant vacuoles. Methods Enzymol 96:580–589

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33:713–717

    Article  CAS  Google Scholar 

  • Sankaranarayanan R, Dock-Bregeon AC, Rees B, Bovee M, Caillet J, Romby P, Francklyn CS, Moras D (2000) Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase. Nat Struct Biol 7:461–465

    Article  PubMed  CAS  Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann J, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826

    Article  PubMed  CAS  Google Scholar 

  • Sarret G, Vangronsveld J, Manceau A, Musso M, D’Haen J, Menthonnex J, Hazemann J (2001) Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environ Sci Technol 35:2854–2859

    Article  PubMed  CAS  Google Scholar 

  • Sarret G, Willems G, Isaure MP, Marcus MA, Fakra SC, Frérot H, Pairis S, Geoffroy N, Manceau A, Saumitou-Laprade P (2009) Zinc distribution and speciation in Arabidopsis halleri X Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytol

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  CAS  Google Scholar 

  • Schat H, Sharma SS, Vooijs R (1997) Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Plant 101:477–482

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  PubMed  CAS  Google Scholar 

  • Shelp BJ (1987) The composition of phloem exudate and xylem sap from broccoli (Brassica oleracea var. italica) supplied with NH +4 , NO -3 or NH4NO3. J Exp Bot 38:1619–1636

    Article  CAS  Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    Article  CAS  Google Scholar 

  • Sillen LG, Martell AE (1991) Stability constants of metal-ion complexes. The Chemical Society, Burlington House, W1, London

    Google Scholar 

  • Smirnoff N, Stewart GR (1987) Nitrogen assimilation and zinc toxicity to zinc-tolerant and non-tolerant clones of Deschampsia cespitosa (L.) Beauv. New Phytol 107:671–680

    Article  CAS  Google Scholar 

  • Smith RAH, Bradshaw AD (1979) The use of metal tolerant plant populations for the reclamation of metalliferous wastes. J Appl Ecol 16:595–612

    Article  CAS  Google Scholar 

  • Stacey SP, McLaughlin MJ, Çakmak I, Hettiarachchi GM, Scheckel KG, Karkkainen M (2008) Root uptake of lipophilic zinc-rhamnolipid complexes. J Agric Food Chem 56:2112–2117

    Article  PubMed  CAS  Google Scholar 

  • Stec B, Holtz KM, Kantrowitz ER (2000) A revised mechanism for the alkaline phosphatase reaction involving three metal ions. J Mol Biol 299:1303–1311

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible W, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970

    Article  PubMed  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New York, pp 1–1022

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. Sinauer Associates, Inc., Massachusetts, p 764

    Google Scholar 

  • Terzano R, Chami ZA, Vekemans B, Janssens K, Miano T, Ruggiero P (2008) Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and micro-XANES. J Agric Food Chem 56:3222–3231

    Article  PubMed  CAS  Google Scholar 

  • Thurman DA, Rankin JL (1982) The role of organic acids in zinc tolerance in Deschampsia caespitosa. New Phytol 91:629–635

    Article  CAS  Google Scholar 

  • Tills AR, Alloway BJ (1981) The effect of ammonium and nitrate nitrogen sources on copper uptake and amino acid status of cereals. Plant Soil 62:279–290

    Article  CAS  Google Scholar 

  • Tolrà RP, Poschenrieder C, Barcelό J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acids. J Plant Nutr 19:1541–1550

    Article  Google Scholar 

  • Torii K, Laties GH (1966) Organic acid synthesis in response to excess cation absorption in vacuolate and non-vacuolate sections of corn and barley roots. Plant Cell Physiol 7:395–403

    CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Van Beusichem ML, Kirkby EA, Baas R (1988) Influence of nitrate and ammonium nutrition on the uptake, assimilation, and distribution of nutrients in Ricinus communis. Plant Physiol 86:914–921

    Article  PubMed  Google Scholar 

  • Van Steveninck RFM, Babare A, Fernando DR, Van Steveninck ME (1994) The binding of zinc, but not cadmium, by phytic acid in roots of crop plants. Plant Soil 167:157–164

    Article  Google Scholar 

  • Vedani A, Huhta DW (1990) A new force for modeling metalloprotein. J Am Chem Soc 112:4759–4767

    Article  CAS  Google Scholar 

  • Vogel-Mikuš K, Simčič J, Pelicon P, Budnar M, Kump P, Nečemer M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Regvar M (2008) Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ 31:1484–1496

    Article  PubMed  Google Scholar 

  • White MC, Decker AM, Chaney RL (1981) Metal complexation in xylem fluid. I Chemical composition of tomato and soybean stem exudate. Plant Physiol 67:292–300

    Article  PubMed  CAS  Google Scholar 

  • Wink M (1993) The plant vacuole: a multifunctional compartment. J Exp Bot 44:231–246

    CAS  Google Scholar 

  • Wójcik M, Skórzyńska-Polit E, Tukiendorf A (2006) Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul 48:145–155

    Article  Google Scholar 

  • Xie Y, Jiang RF, Zhang FS, McGrath S, Zhao F (2009) Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant Soil 318:205–215

    Article  CAS  Google Scholar 

  • Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath S, Zhao F (2007) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178:315–325

    Article  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Shen ZG, McGrath SP (1998) Solubility of zinc and interactions between zinc and phosphorus in the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 21:108

    Article  CAS  Google Scholar 

  • Zornoza P, Carpena O (1992) Study on ammonium tolerance of cucumber plants. J Plant Nutr 15:2417–2426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was undertaken at the Australian National Beamline Facility (ANBF) at the Photon Factory in Japan, operated by the Australian Synchrotron. Dr Michael Cheah (ANBF) is gratefully acknowledged for support during the beamtime. We thank Giang Nguyen for her invaluable technical assistance in the laboratory. We also acknowledge the Linkage Infrastructure, Equipment and Facilities Program (LE0989759) and the Linkage Project (LP100100800) of the Australian Research Council for financial support, and the High Energy Accelerator Research Organisation (KEK) in Tsukuba, Japan, for operation support. Travel funding to the ANBF was kindly provided by the Australian Synchrotron Research Program (ASRP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixian Tang.

Additional information

Responsible Editor: Fangjie Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 215 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monsant, A.C., Kappen, P., Wang, Y. et al. In vivo speciation of zinc in Noccaea caerulescens in response to nitrogen form and zinc exposure. Plant Soil 348, 167–183 (2011). https://doi.org/10.1007/s11104-011-0887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0887-7

Keywords

Navigation