Skip to main content
Log in

Autotrophic archaeal nitrification is preferentially stimulated by rice callus mineralization in a paddy soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Previous studies suggest that organic carbon (C) and nitrogen (N) can stimulate soil nitrification, but whether autotrophic or heterotrophic nitrification is stimulated and who are active nitrifiers for the nitrification activity is still in debate. We elucidated which nitrification dominated and the active nitrifiers during the decomposition of rice callus.

Methods

15N-labeled callus and acetylene (C2H2) inhibition were used to explore the autotrophic or heterotrophic nitrification during the decomposition of callus and DNA-based stable isotope probing (SIP) and high-throughput sequencing were used to investigate the active nitrifiers.

Results

Autotrophic nitrification dominated the nitrification activity, driven by oxidation of ammonia (NH3) produced from mineralization of the callus-derived organic N. Callus significantly stimulated nitrification activity, which was paralleled by changes in the abundance and community composition of AOA. DNA-SIP further demonstrated that the active AOA outnumbered their bacterial counterparts in the 13C-DNA from the soil with callus amendment. Phylogenetic analysis revealed the functional importance of soil fosmid 29i4-like and 54d9-like AOA within soil group 1.1b during the active nitrification with callus cells.

Conclusions

NH3 released from the mineralization of callus was the main substrate for autotrophic nitrification and preferentially stimulated the growth of AOA within group 1.1b in the paddy soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AOB:

Ammonia-oxidizing bacteria

AOA:

Ammonia-oxidizing archaea

NOB:

Nitrite-oxidizing bacteria

AMO:

Ammonia monooxygenase

SIP:

Stable isotope probing

OTU:

Operational taxonomic unit

References

  • Bannert A, Mueller-Niggemann C, Kleineidam K, Wissing L, Cao ZH, Schwark L, Schloter M (2011) Comparison of lipid biomarker and gene abundance characterizing the archaeal ammonia-oxidizing community in flooded soils. Biol Fertil Soils 47:839–843

    CAS  Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917

    CAS  PubMed  Google Scholar 

  • Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hugler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460

    CAS  PubMed  Google Scholar 

  • Bernhard AE, Bollmann A (2010) Estuarine nitrifiers :newpalyers, patterns and processes. Estuar Coast Shelf Sci 88:1–11

    CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carson PL (1980) Recommended potassium test. In: Dahnke WC (ed) Recommended chemical soil test procedures for the North Central region. North Dakota Agric Exp Station Bull 499:17–18

    Google Scholar 

  • Cornfield AH (1960) Ammonia released on treating soils with N sodium hydroxide as a possible means of predicting the nitrogen-supplying power of soils. Nature 187:260–261

    CAS  Google Scholar 

  • Curtin D, Campbell CA, Jalil A (1998) Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol Biochem 30:57–64

    CAS  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624

    CAS  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869

    CAS  PubMed  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. P Natl Acad Sci USA 102:14683–14688

    CAS  Google Scholar 

  • Ge TD, Li BZ, Zhu ZK, Hu YJ, Yuan HZ, Dorodnikov M, Jones DL, Wu JS, Yakov K (2017) Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biol Fertil Soils 53:37–48

    CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    CAS  PubMed  Google Scholar 

  • Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, Delong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:e95

    PubMed  PubMed Central  Google Scholar 

  • He JZ, Hu HW, Zhang LM (2012) Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biol Biochem 55:146–154

    CAS  Google Scholar 

  • Hu HW, Xu ZH, He JZ (2014) Ammonia-oxidizing archaea play a predominant role in acid soil nitrification. Adv Agron 125:261–302

    Google Scholar 

  • Huygens D, Boeckx P, Templer P, Paulino L, Cleemput OV, Oyarzún C, Müller C, Godoy R (2008) Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nat Geosci 1:543–548

    CAS  Google Scholar 

  • Hynes RK, Knowles R (1982) Effect of acetylene on autotrophic and heterotrophic nitrification. Can J Microbiol 28:334–340

    CAS  Google Scholar 

  • Jia Z, Conrad R (2009) Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    CAS  PubMed  Google Scholar 

  • Jiang QQ, Bakken LR (1999) Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol Ecol 30:171–186

    CAS  PubMed  Google Scholar 

  • Joshi AB, Vann DR, Johnson AH (2006) Litter quality and climate decouple nitrogen mineralization and productivity in Chilean temperate rainforests. Soil Sci Soc Am J 70:153–162

    CAS  Google Scholar 

  • Kalembasa SJ, Jenkinson DS (1973) A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J Sci Food Agric 24:1085–1090

    CAS  Google Scholar 

  • Kelly JJ, Policht K, Grancharova T, Hundal LS (2011) Distinct responses in Ammonia-oxidizing archaea and Bacteria after addition of biosolids to an agricultural soil. Appl Environ Microbiol 77:6551–6558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kemmitt S, Wright D, Goulding K, Jones D (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem 38:898–911

    CAS  Google Scholar 

  • Kim JG, Park SJ, Sinninghe Damsté JS, Schouten S, Rijpstra WI, Jung MY, Kim SJ, Gwak JH, Hong H, Si OJ (2016) Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. P Natl Acad Sci USA 113:7888–7893

    CAS  Google Scholar 

  • Kjeldahl J (1883) Neue methode zur bestimmung des stickstoffs in organischen körpern (New method for the determination of nitrogen in organic substances.). Fresenius J Anal Chem 22:366–382

    Google Scholar 

  • Kӧnneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Google Scholar 

  • Koops HP, Pommerening-Röser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37:1–9

    CAS  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Stienstra AW, Heilig GHJ, Stephen JR, Woldendorp JW (2000) Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2:99–100

    CAS  PubMed  Google Scholar 

  • Lee CG, Watanabe T, Sato Y, Murase J, Asakawa S, Kimura M (2011) Bacterial populations assimilating carbon from 13C-labeled plant residue in soil: analysis by a DNA-SIP approach. Soil Biol Biochem 43:814–822

    CAS  Google Scholar 

  • Lee CG, Watanabe T, Murase J, Asakawa S, Kimura M (2012) Growth of methanogens in an oxic soil microcosm: elucidation by a DNA-SIP experiment using 13C-labeled dried rice callus. Appl Soil Ecol 58:37–44

    Google Scholar 

  • Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. P Natl Acad Sci USA 108:15892–15897

    CAS  Google Scholar 

  • Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, GubryRangin C, Thion C, Prosser J, Nico G (2016) Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol 92:fiw057

    PubMed  PubMed Central  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    CAS  PubMed  Google Scholar 

  • Levičnik-Höfferle S, Nicol GW, Ausec L, Mandićmulec I, Prosser JI (2012) Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbio Ecol 80:114–123

    Google Scholar 

  • Li Y, Lee CG, Watanabe T, Murase J, Asakawa S, Kimura M (2011) Identification of microbial communities that assimilate substrate from root cap cells in an aerobic soil using a DNA-SIP approach. Soil Biol Biochem 43:1928–1935

    CAS  Google Scholar 

  • Li Y, Watanabe T, Murase J, Asakawa S, Kimura M (2014) Abundance and composition of ammonia oxidizers in response to degradation of root cap cells of rice in soil microcosms. J Soils Sediments 14:1587–1598

    Google Scholar 

  • Li YF, Hu SD, Chen JH, Müller K, Li YC, Fu WJ, Lin ZW, Wang HL (2018) Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. J Soils Sediments 18:546–563

    CAS  Google Scholar 

  • Liu H, Ding Y, Zhang Q, Liu X, Xu J, Li Y, Di H (2018) Heterotrophic nitrification and denitrification are the main sources of nitrous oxide in two paddy soils. Plant Soil:1–15

  • Lu L, Han W, Zhang J, Wu Y, Wang B, Lin X, Zhu J, Cai Z, Jia Z (2012) Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. ISME J 6:1978–1984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okano Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circ. 939. Washington, DC

  • Pan H, Xie K, Zhang Q, Jia Z, Xu J, Di H, Li Y (2018) Archaea and bacteria respectively dominate nitrification in lightly and heavily grazed soil in a grassland system. Biol Fertil Soils 54:41–54

    CAS  Google Scholar 

  • Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14:525–539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    CAS  PubMed  Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531

    CAS  PubMed  Google Scholar 

  • Quaiser A, Ochsenreiter T, Klenk HP, Kletzin A, Treusch AH, Meurer G, Eck J, Sensen CW, Schleper C (2002) First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol 4:603–611

    CAS  PubMed  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saghir NS, Mungwari FP, Mulvaney RL, Azam F (1993) Determination of nitrogen by microdiffusion in mason jars: II. Inorganic nitrogen-15 in soil extracts. Commun Soil Sci Plan 24:2747–2763

    CAS  Google Scholar 

  • Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, Neufeld JD (2017) Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J 11:1142–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thielebruhn S, Sharma S, Wilke BM, Matthies M, Smalla K (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456

    CAS  PubMed  Google Scholar 

  • Seneviratne G, Lhjvan H, Lja B, Kulasooriya SA (1999) Differential effects of soil properties on leaf nitrogen release. Biol Fertil Soils 28:238–243

    CAS  Google Scholar 

  • Sorokin DY, Lücker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WI, Damsté JS, Le DP, Muyzer G, Wagner M (2012) Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J 6:2245–2256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, Nowka B, Schmeisser C, Lebedeva EV, Rattei T (2012) The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol 14:3122–3145

    CAS  PubMed  Google Scholar 

  • Stahl DA, de la Torre JR (2012) Physiology and diversity of ammoniaoxidizing archaea. Annu Rev Microbiol 66:83–101

    CAS  PubMed  Google Scholar 

  • Stehr G, Bottcher B, Dittberner P, Rath G, Koops HP (1995) The ammoniaoxidizing nitrifying population of the river Elbe estuary. FEMS Microbiol Ecol 17:177–186

    CAS  Google Scholar 

  • Stein LY (2019) Insights into the physiology of ammonia-oxidizing microorganisms. Curr Opin Chem Biol 49:9–15

    CAS  PubMed  Google Scholar 

  • Stouthamer AH, de Boer AP, Van dOJ, van Spanning RJ (1997) Emerging principles of inorganic nitrogen metabolism in Paracoccus denitrificans and related bacteria. Anton Leeuw 71:33–41

    CAS  Google Scholar 

  • Stubner S (2002) Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen detection. Journal Microbiol Meth 50:155–164

    CAS  Google Scholar 

  • Suwa Y, Imamura Y, Suzuki T, Tashiro T, Urushigawa Y (1994) Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Water Res 28:1523–1532

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    CAS  PubMed  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    CAS  PubMed  Google Scholar 

  • Walker CB, Jr DLT, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochierarmanet C, Chain PS, Chan PP, Gollabgir A (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. P Natl Acad Sci USA 107:8818–8823

    CAS  Google Scholar 

  • Wang B, Zhao J, Guo Z, Ma J, Xu H, Jia Z (2015a) Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J 9:1062–1075

    CAS  PubMed  Google Scholar 

  • Wang X, Wang C, Bao L, Xie S (2015b) Impact of carbon source amendment on ammonia-oxidizing microorganisms in reservoir riparian soil. Ann Microbiol 65:1–8

    Google Scholar 

  • Wang M, Wang S, Long X, Zhuang L, Zhao X, Jia Z, Zhu G (2018) High contribution of ammonia-oxidizing archaea (AOA) to ammonia oxidation related to a potential active AOA species in various arable land soils. J Soils Sediments 19:1077–1087. https://doi.org/10.1007/s11368-018-2108-y

    Article  CAS  Google Scholar 

  • Watanabe T, Lee CG, Murase J, Asakawa S, Kimura M (2011) Carbon flow into ammonia-oxidizing bacteria and archaea during decomposition of 13C-labeled plant residues in soil. Soil Sci Plant Nutr 57:775–785

    CAS  Google Scholar 

  • Wei S, Norton JM (2000) Microbial control of nitrate concentrations in an agricultural soil treated with dairy waste compost or ammonium fertilizer. Soil Biol Biochem 32:1453–1457

    Google Scholar 

  • Wei XM, Hu YJ, Peng PQ, Zhu ZK, Atere CT, O'Donnell AG, Wu JS, Ge TD (2017) Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil. Biol Fertil Soils 53:767–776

    CAS  Google Scholar 

  • Wessén E, Nyberg K, Jansso JK, Hallin S (2010) Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Appl Soil Ecol 45:193–200

    Google Scholar 

  • Xia W, Zhang C, Zeng X, Feng Y, Weng J, Lin X, Zhu J, Xiong Z, Xu J, Cai Z (2011) Autotrophic growth of nitrifying community in an agricultural soil. ISME J 5:1226–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Schnorr J, Keibler B, Simon HM (2012) Comparative analysis of 16S rRNA and amoA genes from archaea selected with organic and inorganic amendments in enrichment culture. Appl Environ Microbiol 78:2137–2146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Liu X, Li Y, Ran Y, Liu Y, Zhang Q, Li Z, He Y, Xu J, Di H (2017) High temperatures inhibited the growth of soil bacteria and archaea but not that of fungi and altered nitrous oxide production mechanisms from different nitrogen sources in an acidic soil. Soil Biol Biochem 107:168–179

    CAS  Google Scholar 

  • Yu M, Meng J, Yu L, Su W, Afzal M, Li Y, Brookes PC, Redmile-Gordon M, Luo Y, Xu J (2018) Changes in nitrogen related functional genes along soil pH, C and nutrient gradients in the charosphere. Sci Total Environ 650:626–632

    PubMed  Google Scholar 

  • Zhang LM, Offre PR, He JZ, Verhamme DT, Nicol GW, Prosser JI (2010) Autotrophic ammonia oxidation by soil thaumarchaea. P Natl Acad Sci USA 107:17240–17245

    CAS  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045

    CAS  PubMed  Google Scholar 

  • Zhang J, Sun W, Zhong W, Cai Z (2014) The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils. Soil Biol Biochem 76:143–148

    CAS  Google Scholar 

  • Zhang J, Wang J, Zhong W, Cai Z (2015) Organic nitrogen stimulates the heterotrophic nitrification rate in an acidic forest soil. Soil Biol Biochem 80:293–295

    Google Scholar 

  • Zhang K, Chen L, Li Y, Brookes PC, Xu J, Luo Y (2016) The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol Fertil Soils 53:77–87

    Google Scholar 

  • Zhang Q, Li Y, He Y, Liu H, Dumont MG, Brookes PC, Xu J (2019) Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soils. Soil Biol Biochem 131:229–237

    CAS  Google Scholar 

  • Zhao X, Cai Y, Peng C, Zhao S, Li Y (2014) Regulation of nitrification in latosolic red soils by organic amendment. Environ Earth Sci 71:3865–3878

    CAS  Google Scholar 

  • Zhou X, Fornara D, Wasson EA, Wang D, Ren G, Christie P, Jia Z (2015) Effects of 44 years of chronic nitrogen fertilization on the soil nitrifying community of permanent grassland. Soil Biol Biochem 91:76–83

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41301254 and 41671249) and National Key P&D Program of China (2017YFD0800404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Additional information

Responsible Editor: Liz Shaw.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Pan, H., Hu, H. et al. Autotrophic archaeal nitrification is preferentially stimulated by rice callus mineralization in a paddy soil. Plant Soil 445, 55–69 (2019). https://doi.org/10.1007/s11104-019-04164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04164-0

Keywords

Navigation