Skip to main content
Log in

Nitrogen-fixation in Acer macrophyllum canopy bryophytes in the Pacific Northwest, USA

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

Old-growth forests in the Pacific Northwest host a variety of epiphytes on their branches and stem. Given the common and often large epiphytic biomass associated with Acer macrophyllum (Pursh) in this region, we evaluated how seasonal weather changes and urbanization (metal and nitrogen deposition), affect canopy epiphytic N2 fixation in the Hoh Rainforest of the Olympic Peninsula and in urban parks and forests in Seattle.

Methods

We collected Isothecium stoloniferum (Brid.) samples from both the Hoh Rainforest and Seattle at four periods from April 2016 through January 2017. Moss-associated N2 fixation rates were measured in the laboratory using the acetylene reduction assay and trace metal concentrations in the moss were analyzed using NO3 + H2O2 digestion.

Results

We found levels of N2 fixation were highest during the spring sampling period. Elevated levels of heavy metals were observed in I. stoloniferum samples collected in the urban canopies in Seattle where N2 fixation rates were low, suggesting N2 fixation is sensitive to the bioaccumulation of heavy metals. In A. macrophyllum canopies, I. stoloniferum was found to yield 0.1130 g N m−2 yr−1 in canopy branches within the Hoh Rainforest and only 0.0009 g N m−2 yr−1 on branches in Seattle.

Conclusions

These results highlight a rarely explored source of biological N2-fixation in temperate rainforests and suggest that epiphytic N2-fixation may contribute bio-available nitrogen in A. macrophyllum stands. N2-fixation in canopy bryophytes was found to be highly sensitive to urban pollution, possibly due to bioaccumulation of heavy metals in bryophyte tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available at DRYAD entry DOI.

References

  • Ackermann K, Zackrisson O, Rousk J, Jones DL, DeLuca TH (2012) N2 fixation in feather mosses is a sensitive indicator of N deposition in boreal forests. Ecosystems 15(6):986–998

    Article  CAS  Google Scholar 

  • Aldous AR (2002) Nitrogen translocation in Sphagnum mosses: effects of atmospheric nitrogen deposition. New Phytol 156(2):241–253

    Article  CAS  PubMed  Google Scholar 

  • Alexander V, Schell DM (1973) Seasonal and spatial variation of nitrogen fixation in the Barrow, Alaska, tundra. Arct Alp Res 5(2):77–88

    Article  CAS  Google Scholar 

  • Basilier K, Granhall U, Stenström TA (1978) Nitrogen fixation in wet minerotrophic moss communities of a subarctic mire. Oikos 31(2):236–246

    Article  CAS  Google Scholar 

  • Basiliko N, Yavitt JB (2001) Influence of Ni Co, Fe, and Na additions on methane production in Sphagnum-dominated Northern American peatlands. Biogeochemistry 52(2):133–153

    Article  CAS  Google Scholar 

  • Bates JW (1992) Mineral nutrient acquisition and retention by bryophytes. J Bryol 17(2):223–240

    Article  Google Scholar 

  • Bengtsson C, Folkeson L, Göransson A (1982) Growth reduction and branching frequency in Hylocomium splendens near a foundry emitting copper and zinc. Lindbergia 8:129–138

    Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter. Decomposition, humus formation, carbon sequestration, 2nd edn. Springer, Berlin, 2008

  • Berg T, Steinnes E (1997) Recent trends in atmospheric deposition of trace elements in Norway as evident from the 1995 moss survey. Sci Total Environ 208(3):197–206

    Article  CAS  PubMed  Google Scholar 

  • Berg T, Røyset O, Steinnes E (1995) Moss (Hylocomium splendens) used as biomonitor of atmospheric trace element deposition: estimation of uptake efficiencies. Atmos Environ 29(3):353–360

    Article  CAS  Google Scholar 

  • Bidwell AL, Callahan ST, Tobin PC, Nelson BK, DeLuca TH (2019) Quantifying the elemental composition of mosses in western Washington USA. Sci Total Environ 693:133404

    Article  CAS  PubMed  Google Scholar 

  • Binkley D, Graham RL (1981) Biomass, production, and nutrient cycling of mosses in an old-growth Douglas-fir forest. Ecology 62(5):1387–1389

    Article  Google Scholar 

  • Brady NC, Weil RR (2000) Elements of the nature and properties of soils. Prentice Hall, Upper Saddle River, pp 463–471

    Google Scholar 

  • Chapin FS (1991) Integrated responses of plants to stress. Bioscience 41(1):29–36

    Article  Google Scholar 

  • Cornelissen JHC, Land SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey A, Marchant HJ (1983) Seasonal variation in nitrogen fixation by Nostoc commune Vaucher at the Vestfold Hills, Antarctica. Phycologia 22(4):377–385

    Article  Google Scholar 

  • Decina SM, Hutyra LR, Templer PH (2020) Hotspots of nitrogen deposition in the world’s urban areas: a global data synthesis. Front Ecol Environ 18(2):92–100

    Article  Google Scholar 

  • DeLuca TH, Zackrisson O, Nilsson MC, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419(6910):917–920

    Article  CAS  PubMed  Google Scholar 

  • DeLuca TH, Zackrisson O, Gundale MJ, Nilsson MC (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320(5880):1181–1181

    Article  CAS  PubMed  Google Scholar 

  • DeLuca TH, Zackrisson O, Nilsson M-C, Sun S, Arróniz-Crespo M (2022) Long-term fate of nitrogen fixation in Pleurozium schreberi Brid (mit.) moss carpets in boreal forests. Appl Soil Ecol 169:104215

    Article  Google Scholar 

  • Erisman JW, Bleeker A, Galloway J, Sutton MS (2007) Reduced nitrogen in ecology and the environment. Environ Pollut 150(1):140–149

    Article  CAS  PubMed  Google Scholar 

  • Fenn ME, Ross CS, Schilling SL, Baccus WD, Larrabee MA, Lofgren RA (2013) Atmospheric deposition of nitrogen and sulfur and preferential canopy consumption of nitrate in forests of the Pacific Northwest, USA. For Ecol Manage 302:240–253

    Article  Google Scholar 

  • Gentili F, Nilsson MC, Zackrisson O, DeLuca TH, Sellstedt A (2005) Physiological and molecular diversity of feather moss associative N2-fixing cyanobacteria. J Exp Bot 56(422):3121–3127

    Article  CAS  PubMed  Google Scholar 

  • Gjengedal E, Steinnes E (1990) Uptake of metal ions in moss from artificial precipitation. Environ Monit Assess 14(1):77–87

    Article  CAS  PubMed  Google Scholar 

  • González AG, Pokrovsky OS (2014) Metal adsorption on mosses: toward a universal adsorption model. J Colloid Interface Sci 415:169–178

    Article  PubMed  Google Scholar 

  • Gotsch SG, Nadkarni N, Amici A (2016) The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. J Trop Ecol 32(5):455–468

    Article  Google Scholar 

  • Gundale MJ, Gustafsson H, Nilsson MC (2009) The sensitivity of nitrogen fixation by a feathermoss–cyanobacteria association to litter and moisture variability in young and old boreal forests. Can J for Res 39(12):2542–2549

    Article  CAS  Google Scholar 

  • Gundale MJ, DeLuca TH, Nordin A (2011) Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Glob Change Biol 17(8):2743–2753

    Article  Google Scholar 

  • Gundale MJ, Nilsson M, Bansal S, Jäderlund A (2012) The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. New Phytol 194(2):453–463

    Article  CAS  PubMed  Google Scholar 

  • Haristoy CT, Zabowski D, Nadkarni N (2014) Canopy soils of Sitka spruce and bigleaf maple in the Queets River Watershed, Washington. Soil Sci Soc Am J 78(S1):S118–S124

    Article  Google Scholar 

  • Harmens H, Norris DA, Koerber GR, Buse A, Steinnes E, Rühling Å (2008) Temporal trends (1990–2000) in the concentration of cadmium, lead and mercury in mosses across Europe. Environ Pollut 151(2):368–376

    Article  CAS  PubMed  Google Scholar 

  • Hart GE, Parent DR (1974) Chemistry of throughfall under Douglas-fir and Rocky Mountain juniper. Am Midl Nat 92:191–201

    Article  CAS  Google Scholar 

  • Kenkel NC, Bradfield GE (1986) Epiphytic vegetation on Acer macrophyllum: a multivariate study of species-habitat relationships. Plant Ecol 68(1):43–53

    Article  Google Scholar 

  • Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, London, p 304

    Google Scholar 

  • Klopatek JM, Barry MJ, Johnson DW (2006) Potential canopy interception of nitrogen in the Pacific Northwest, USA. For Ecol Manage 234(1):344–354

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology. Elsevier

    Google Scholar 

  • Lennihan R, Chapin DM, Dickson LG (1994) Nitrogen fixation and photosynthesis in high arctic forms of Nostoc commune. Can J Bot 72(7):940–945

    Article  Google Scholar 

  • Liengen T, Olsen RA (1997) Seasonal and site-specific variations in nitrogen fixation in a high arctic area, Ny-Ålesund, Spitsbergen. Can J Microbiol 43(8):759–769

    Article  CAS  Google Scholar 

  • Lindo Z, Whiteley JA (2011) Old trees contribute bio-available nitrogen through canopy bryophytes. Plant Soil 342(1–2):141–148

    Article  CAS  Google Scholar 

  • Lindo Z, Winchester NN (2007) Oribatid mite communities and foliar litter decomposition in canopy suspended soils and forest floor habitats of western redcedar forests, Vancouver Island, Canada. Soil Biol Biochem 39(11):2957–2966

    Article  CAS  Google Scholar 

  • Meeks JC (1998) Symbiosis between Nitrogen-Fixing Cyanobacteria and Plants The establishment of symbiosis causes dramatic morphological and physiological changes in the cyanobacterium. Bioscience 48(4):266–276

    Article  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5(1):62–71

    Article  CAS  PubMed  Google Scholar 

  • Mulvaney RL (1996) Nitrogen—inorganic forms. In: Sparks DL (ed) Methods of soil analysis Part 3: Chemical methods. SSSA Book Series 5. Soil Science Society of America, Madison, pp 1123–1184

  • Nadkarni NM (1984) Biomass and mineral capital of epiphytes in an Acer macrophyllum community of a temperate moist coniferous forest, Olympic Peninsula, Washington State. Can J Bot 62(11):2223–2228

    Article  CAS  Google Scholar 

  • Nadkarni NM (1994) Diversity of species and interactions in the upper tree canopy of forest ecosystems. American Zoologist 34:70–78

    Article  Google Scholar 

  • Nadkarni NM, Matelson TJ (1992) Biomass and nutrient dynamics of fine litter of terrestrially rooted material in an Neotropical Montane Forest, Costa Rica. Biotropica 24(2):113–120

    Article  Google Scholar 

  • NOWData (2017) NOAA Online Weather Data: https://www.weather.gov/wrh/climate?wfo=lbf. National Oceanic and Atmospheric Administration. Accessed 14 Mar 2017

  • Oechel WC, Van Cleve K (1986) The role of bryophytes in nutrient cycling in the taiga. In: Van Cleve K, Chapin FS, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the Alaskan taiga: a synthesis of structure and function. Springer, New York, pp 121–137

    Chapter  Google Scholar 

  • Pearson J, Wells DM, Seller KJ, Bennett A, Soares A, Woodall J, Ingrouille MJ (2000) Traffic exposure increases natural 15N and heavy metal concentrations in mosses. New Phytol 147(2):317–326

    Article  CAS  Google Scholar 

  • Perez-Quezada JF, Pérez CA, Brito CE, Fuentes JP, Gaxiola A, Aguilera-Riquelme D, Lopatin J (2021) Biotic and abiotic drivers of carbon, nitrogen and phosphorus stocks in a temperate rainforest. For Ecol Manage 494:119341

    Article  Google Scholar 

  • Pike LH, Rydell RA, Denison WC (1977) A 400-year-old Douglas fir tree and its epiphytes: biomass, surface area, and their distributions. Can J for Res 7(4):680–699

    Article  Google Scholar 

  • Pott U, Turpin DH (1998) Assessment of atmospheric heavy metals by moss monitoring with Isothecium stoloniferum Brid. in the Fraser Valley, BC, Canada. Water Air Soil Pollut 101(1):25–44

    Article  CAS  Google Scholar 

  • Proctor M (2001) Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regul 35(2):147–156

    Article  CAS  Google Scholar 

  • Puget Sound Regional Council (2020) Vision 2050: A Plan for the Central Puget Sound Region. PSR Council, Seattle

    Google Scholar 

  • Pypker TG, Unsworth MH, Bond BJ (2006) The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Can J For Res 36(4):819–832

    Article  Google Scholar 

  • Raymond BA, Pott U (2003) Atmospheric contaminants in biota of forested watersheds near Vancouver, BC: Environment Canada. Georgia Basin Ecosystem Initiative

  • Raymond BA, Bassingthwaighte T (2010) Measuring nitrogen and sulphur deposition in the Georgia Basin, British Columbia, using lichens and moss. J Limnol 69(1s):22–32

    Article  Google Scholar 

  • Reimann C, Niskavaara H, Kashulina G, Filzmoser P, Boyd R, Volden T, Tomilina O, Bogatyrev I (2001) Critical remarks on the use of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) for monitoring of airborne pollution. Environ Pollut 113(1):41–57

    Article  CAS  PubMed  Google Scholar 

  • Rousk K, Jones DL, DeLuca TH (2014) Exposure to nitrogen does not eliminate N2 fixation in the feather moss Pleurozium schreberi (Brid.) Mitt. Plant Soil 374(1–2):513–521

    Article  CAS  Google Scholar 

  • Rousk K, Pedersen PA, Dyrnum K, Michelsen A (2017) The interactive effects of temperature and moisture on nitrogen fixation in two temperate-arctic mosses. Theor Exp Plant Physiol 29(1):25–36

    Article  Google Scholar 

  • RStudio Team (2020) RStudio: Integrated Development for R. RStudio, PBC, Boston. http://www.rstudio.com/

    Google Scholar 

  • Schöllhorn R, Burris RH (1967) Acetylene as a competitive inhibitor of N-2 fixation. Proc Natl Acad Sci 58(1):213–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott D, Bradley RL, Bellenger J-P, Houle D, Gundale M, Rousk K, DeLuca TH (2018) Anthropogenic deposition of heavy metals and phosphorus may reduce biological N2 fixation in boreal forest mosses. Sci Total Environ 630(1):303–310

    Google Scholar 

  • Shi XM, Song L, Liu WY, Lu HZ, Qi JH, Li S, Chen X, Wu JF, Liu S, Wu CS (2017) Epiphytic bryophytes as bio-indicators of atmospheric nitrogen deposition in a subtropical montane cloud forest: Response patterns, mechanism, and critical load. Environ Pollut 229:932–941

    Article  CAS  PubMed  Google Scholar 

  • Solheim B, Johanson U, Callaghan TV, Lee JA, Gwynn-Jones D, Björn LO (2002) The nitrogen fixation potential of arctic cryptogram species is influenced by enhanced UV-B radiation. Oecologia 133(1):90–93

    Article  PubMed  Google Scholar 

  • Spearing AM (1972) Cation-exchange capacity and galacturonic acid content of several species of Sphagnum in Sandy Ridge Bog, Central New York State. Bryologist 75(2):154–158

    Article  CAS  Google Scholar 

  • Susfalk RB, Johnson DW (2002) Ion exchange resin based soil solution lysimeters and snowmelt solution collectors. Commun Soil Sci Plant Anal 33(7–8):1261–1275

    Article  CAS  Google Scholar 

  • Tejo CF, Zabowski D, Nadkarni NM (2015) Total and epiphytic litter under the canopy of Acer macrophyllum in an old-growth temperate rainforest, Washington State, USA. Can J For Res 45(11):1654–1661

    Article  CAS  Google Scholar 

  • Tyler G (1990) Bryophytes and heavy metals: a literature review. Bot J Linn Soc 104(1–3):231–253

    Article  Google Scholar 

  • Van Langenhove L, Depaepe T, Verryckt LT, Fuchslueger L, Donald J, Leroy C, Moorthy SMK, Gargallo-Garriga A, Ellwood MDF, Verbeeck H, Van Der Straeten D, Peñuelas J, Janssens IA (2021) Comparable canopy and soil free-living nitrogen fixation rates in a lowland tropical forest. Sci Total Environ 754:142202

  • Van Stan JT, Pypker TG (2015) A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci Total Environ 536:813–824

    Article  PubMed  Google Scholar 

  • Zackrisson O, DeLuca TH, Nilsson MC, Sellstedt A, Berglund LM (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85(12):3327–3334

    Article  Google Scholar 

  • Zackrisson O, DeLuca TH, Gentili F, Sellstedt A, Jäderlund A (2009) Nitrogen fixation in mixed Hylocomium splendens moss communities. Oecologia 160(2):309

    Article  CAS  PubMed  Google Scholar 

  • Zielke M, Ekker AS, Olsen RA, Spjelkavik S, Solheim B (2002) The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the High Arctic, Svalbard. Arctic Antarctic Alpine Res 34(3):293–299

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the USDA National Institute of Food and Agriculture, McIntire-Stennis Cooperative Forestry Program (Project #1006427 to THD and PCT). The contents are solely the responsibility of the authors and do not necessarily represent the official views of the USDA. The authors would like to thank Sean Callahan, Jake Betzen, and Constance Lin for their hard work in the field, and Si Gao for her help in the lab. This research was conducted under Hoh River Trust general use permit, and the City of Seattle Department of Parks and Recreation special use permit. This research was conducted by ALB in partial fulfillment of the requirements for the M.S. degree from the University of Washington.

Author information

Authors and Affiliations

Authors

Contributions

Amanda L. Bidwell: Conceptualization, Data Curation, Analysis, Methodology, Visualization, Writing (Original draft preparation, Reviewing & Editing), Funding Acquisition. Patrick C. Tobin: Conceptualization, Methodology, Writing (Original draft preparation, Reviewing & Editing), Funding Acquisition. Thomas H. DeLuca: Conceptualization, Methodology, Writing (Original draft preparation, Reviewing & Editing), Supervision, Project Administration, Funding Acquisition.

Corresponding author

Correspondence to Thomas H. DeLuca.

Additional information

Responsible Editor: Xinhua He.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidwell, A.L., Tobin, P.C. & DeLuca, T.H. Nitrogen-fixation in Acer macrophyllum canopy bryophytes in the Pacific Northwest, USA. Plant Soil 490, 387–399 (2023). https://doi.org/10.1007/s11104-023-06082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06082-8

Keywords

Navigation