Skip to main content

Advertisement

Log in

Genome-Wide Identification of Drought Response Genes in Soybean Seedlings and Development of Biomarkers for Early Diagnoses

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Drought is a yield-limiting factor for soybean (Glycine max L. Merrill) production in North America. Understanding molecular mechanisms underlying early responses of the soybean plant to drought may help develop new techniques to manage the abiotic stress. The objectives of this research were to identify expressed genes responsive to drought stress at the seedling stage and to develop biomarkers for early diagnostic of genotypic difference in the stress tolerance. Using a GeneChip Soybean Genome Array and an improved algorithm, we identified 697 differentially expressed genes (DEGs), with 420 upregulated and 277 downregulated by a 6-h dehydration treatment. A majority of these DEGs encode transcription factors, protein kinases, hormone biosynthetic/signaling enzymes, or other regulatory proteins. MAPMAN and KEGG enrichment showed that the DEGs were mainly involved in the metabolic and hormone signaling pathways and identified the GmHDZ72/PYL/PP2C module as negative feedback of abscisic acid signaling pathway induced by dehydration stress. Ten DEGs were selected from various pathways and validated in a sample of 20 soybean cultivars varying in the level of drought tolerance. Five of the 10 validated DEGs, Glyma03g30040, Glyma11g05960, Glyma11g11430, Glyma12g22880, and Glyma16g02390, showed expression profiles strongly correlated with the plant height reduction after a 14-d drought treatment. These genes are the best candidate biomarkers to monitor plant early responses to drought stress before a symptom appears and to screen for drought-tolerant genotypes. This research provided a new set of transcriptomic data to develop gene regulatory networks underlying sensing drought signal and possible acclimatization in the early stage and enriched the genomics toolbox with a set of biomarkers for early diagnosis of drought damage and molecular breeding of drought tolerance in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Castro PH, Tavares RM, Bejarano ER, Azevedo H (2012) SUMO, a heavyweight player in plant abiotic stress responses. Cell Mol Life Sci 69:3269–3283

    Article  PubMed  CAS  Google Scholar 

  • Chai HH, Ho WK, Graham N, May S, Massawe F, Mayes S (2017) A cross-species gene expression marker-based genetic map and QTL analysis in bambara groundnut. Genes (Basel) pii:E84

  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 53:299–305

    Article  CAS  Google Scholar 

  • Chen W, Yao Q, Patil GB, Agarwal G, Deshmukh RK, Lin L, Wang B, Wang Y, Prince SJ, Song L, Xu D, An YC, Valliyodan B, Varshney RK, Nguyen HT (2016) Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq. Front Plant Sci 7:1044

    PubMed  PubMed Central  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Craft KE, Mahmood R, King SA, Goodrich G, Yan J (2015) Twentieth century droughts and agriculture: examples from impacts on soybean production in Kentucky, USA. Ambio 44:557–568

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38(Web Server issue):W64–W70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  PubMed  CAS  Google Scholar 

  • Huang DW, Sherman BT, Stephens R, Baseler MW, Lane HC, Lempicki RA (2008) DAVID gene ID conversion tool. Bioinformation 2:428–430

    Article  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50:1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  PubMed  CAS  Google Scholar 

  • Jin Z, Ainsworth EA, Leakey ADB, Lobell DB (2018) Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Glob Chang Biol 24:e522–e533

    Article  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Le HH, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One 7:e49522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C (2008) Automating dChip: toward reproducible sharing of microarray data analysis. BMC Bioinformatics. 9:231

  • Li C, Wong W (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36.

  • Makkena S, Lamb RS (2013) The bHLH transcription factor SPATULA is a key regulator of organ size in Arabidopsis thaliana. Plant Signal Behav 8:e24140

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcolino-Gomes J, Rodrigues FA, Oliveira MC, Farias JR, Neumaier N, Abdelnoor RV, Marcelino-Guimarães FC, Nepomuceno AL (2013) Expression patterns of GmAP2/EREB-like transcription factors involved in soybean responses to water deficit. PLoS One 8:e62294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcolino-Gomes J, Rodrigues FA, Fuganti-Pagliarini R, Nakayama TJ, Ribeiro Reis R, Bouças Farias JR, Harmon FG, Correa Molinari HB, Correa Molinari MD, Nepomuceno A (2015) Transcriptome-wide identification of reference genes for expression analysis of soybean responses to drought stress along the day. PLoS One 10:e0139051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331–2342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19:37–49

    Article  PubMed  CAS  Google Scholar 

  • Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K, Kusakabe K, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2013) GmDREB2A;2, a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiol 161:346–361

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Neves-Borges AC, Guimarães-Dias F, Cruz F, Mesquita RO, Nepomuceno AL, Romano E, Loureiro ME, de Fátima Grossi-de-Sá M, Alves-Ferreira M (2012) Expression pattern of drought stress marker genes in soybean roots under two water deficit systems. Genet Mol Biol 35:212–221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsson A, Engstrom P, Soderman E (2004) The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol 55:663–677

    Article  PubMed  CAS  Google Scholar 

  • Osorio MB, Bücker-Neto L, Castilhos G, Turchetto-Zolet AC, Wiebke-Strohm B, Bodanese-Zanettini MH, Margis-Pinheiro M (2012) Identification and in silico characterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses. Genet Mol Biol 35:233–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedrosa AM, Cidade LC, Martins CP, Macedo AF, Neves DM, Gomes FP, Floh EI, Costa MG (2017) Effect of overexpression of citrus 9-cis-epoxycarotenoid dioxygenase 3 (CsNCED3) on the physiological response to drought stress in transgenic tobacco. Genet Mol Res 16:1–10

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR (1997) Specific oxidative cleavage of carotenoid by VP14 of maize. Science 276:1872–1874

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  PubMed  CAS  Google Scholar 

  • Shin JH, Vaughn JN, Abdel-Haleem H, Chavarro C, Abernathy B, Kim KD, Jackson SA, Li Z (2015) Transcriptomic changes due to water deficit define a general soybean response and accession-specific pathways for drought avoidance. BMC Plant Biol 15:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Shivhare R, Lata C (2017) Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Front Plant Sci 7:2069

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res 20:403–423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Son O, Hur YS, Kim YK, Lee HJ, Kim S, Kim MR, Nam KH, Lee MS, Kim BY, Park J, Park J, Lee SC, Hanada A, Yamaguchi S, Lee IJ, Kim SK, Yun DJ, Söderman E, Cheon CI (2010) ATHB12, an ABA-inducible homeodomain-leucine zipper (HD-zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant Cell Physiol 51:1537–1547

    Article  PubMed  CAS  Google Scholar 

  • Song L, Prince S, Valliyodan B, Joshi T, Maldonado dos Santos JV, Wang J, Lin L, Wan J, Wang Y, Xu D, Nguyen HT (2016) Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions. BMC Genomics 17:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Nguyen HT (2009) Future biotechnology of legume. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, pp 265–308

    Google Scholar 

  • Tripathi P, Rabara RC, Reese RN, Miller MA, Rohila JS, Subramanian S, Shen QJ, Morandi D, Bücking H, Shulaev V, Rushton PJ (2016) A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. BMC Genomics 17:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valdés AE, Overnäs E, Johansson H, Rada-Iglesias A, Engström P (2012) The homeodomain-leucine zipper (HD-zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol Biol 80:405–418

    Article  PubMed  CAS  Google Scholar 

  • Valliyodan B, Ye H, Song L, Murphy M, Shannon JG, Nguyen HT (2016) Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J Exp Bot pii:erw433

  • Wang YX, Liu ZW, Wu ZJ, Li H, Zhuang J (2016) Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze]. PLoS One 11:e0166727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495

    Article  PubMed  CAS  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39(Web Server issue):W316–W322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu P, Cai W (2017) Functional characterization of the BnNCED3 gene in Brassica napus. Plant Sci 256:16–24

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Ohtani M, Yamaguchi M, Toyooka K, Wakazaki M, Sato M, Kubo M, Nakano Y, Sano R, Hiwatashi YM, Kurata T, Yoneda A, Kato K, Hasebe M, Demura T (2014) Contribution of NAC transcription factors to plant adaptation to land. Science 343:1505–1508

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34(Web Server issue):W293–W297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan TM, Jiang H, Guo H, Lin HY, Li L, Wang Y, Tong H, Zhang M, Chu C, Li Z, Aluru M, Aluru S, Schnable PS, Yin Y (2017) RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun 8:14573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ying L, Chen H, Cai W (2014) BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus. Plant Physiol Biochem 79:77–87

    Article  PubMed  CAS  Google Scholar 

  • Zhang XM, Yu HJ, Sun C, Deng J, Zhang X, Liu P, Li YY, Li Q, Jiang WJ (2017) Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus. Plant Physiol Biochem 113:89–109

    Article  CAS  Google Scholar 

  • Zheng Y, Huang Y, Xian W, Wang J, Liao H (2012) Identification and expression analysis of the Glycine max CYP707A gene family in response to drought and salt stresses. Ann Bot 103:743–756

    Article  CAS  Google Scholar 

  • Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong R, Richardson EA, Ye ZH (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This research was supported by South Dakota Excellence Center for Drought Research and South Dakota Soybean Research and Promotion Council. The use of instruments available at South Dakota State University’s Functional Genomics Core Facility and BioSNTR supported in part by the National Science Foundation/EPSCoR grant no. 0091948 and Cooperative Agreement no. IIA-1355423, and by the State of South Dakota, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlong Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 1030 kb)

ESM 2

(XLSX 12.6 kb)

ESM 3

(XLSX 568 kb)

ESM 4

(XLSX 614 kb)

ESM 5

(XLSX 137 kb)

ESM 6

(XLSX 1.96 mb)

ESM 7

(XLSX 28.8 kb)

ESM 8

(XLSX 33.9 kb)

ESM 9

(XLSX 50.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, L., Challa, G.S., Subramanian, S. et al. Genome-Wide Identification of Drought Response Genes in Soybean Seedlings and Development of Biomarkers for Early Diagnoses. Plant Mol Biol Rep 36, 350–362 (2018). https://doi.org/10.1007/s11105-018-1085-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-018-1085-z

Keywords

Navigation