Skip to main content

Advertisement

Log in

Insight into the Molecular Breeding Research Status for Crop Improvement in India: Prospects and Achievements

  • REVIEW
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The development of molecular marker technology in the 1980s changed the fate of plant breeding and greatly complemented crop improvement. The information generated from molecular markers (QTLs mapping and association mapping) and genome sequencing could construct a foundation for the genetic improvement of complex traits in crops through molecular breeding approaches. This review is intended to be a synopsis and up-to-date coverage of achievements and ongoing molecular plant breeding research in the Indian Council of Agriculture Research-Agricultural Universities (ICAR-AUs) for the improvement of biotic and abiotic stress, post-harvest, and nutritional quality attributes in plants. India’s contributions to international crop plant genome sequencing initiatives were also covered in this assessment. The challenge of achieving food security and nutritional quality has prompted ICAR-AUs to step up their molecular plant breeding research in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  • Acquaah G (2012) Polyploidy in plant breeding. Principles of plant genetics and breeding. John Wiley & Sons, Hoboken, NJ, USA, pp 452–469

    Chapter  Google Scholar 

  • Ambati D, Sai Prasad SV, Singh JB, Verma DK, Mishra AN, Prakasha TL, Phuke RM, Sharma KC, Singh AK, Singh GP, Prabhu KV, Dubey VG, Patidar CP, Upendra S, Singh M, Prakash M, Patidar I, Gautam A (2019) High yielding durum wheat variety HI 8759 Pusa Tejas - a new rust and karnal bunt resistant. Indian Farming 69(04):20–22

    Google Scholar 

  • Arora S, Cheema J, Poland J, Uauy C, Chhuneja P (2019) Genome-wide association mapping of grain micronutrients concentration in Aegilops tauschii. Front Plant Sci 10:54. https://doi.org/10.3389/fpls.2019.00054

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernier G, Périlleux C (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnol J 3:3–16

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj C, Tripathi S, Soren RK, Thudi M, Rajesh K, Singh SS, Roorkiwal M, Patil BS, Chitikineni A, Palakurthi R, Vemula AK, Rathore A, Kumar Y, Chaturvedi SK, Mondal B, Shanmugavadivel PS, Dixit SAK, GP. Singh NP. Varshney RK. (2021) Introgression of “QTL-hotspot” region enhances drought tolerance and grain yield in three elite chickpea cultivars. Plant Genome. https://doi.org/10.1002/tpg2.20076

    Article  PubMed  Google Scholar 

  • Bolger ME, Weisshaar B, Scholz U et al (2014) Plant genome sequencing—applications for crop improvement. Curr Opin Biotechnol 26:31–37

    Article  CAS  PubMed  Google Scholar 

  • Bollinedi H, Yadav AK, Vinod KK, Krishnan SG (2020) Genome-wide association study reveals novel marker-trait associations (MTAs) governing the localization of Fe and Zn in the rice grain. 11:1–13. https://doi.org/10.3389/fgene.2020.00213

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Biochemistry and molecular biology of plants. Rockv Am Soc Plant Physiol 1158–1203

  • Chakraborty A, Mahajan S, Jaiswal SK, Sharma VK (2021a) Genome sequencing of turmeric provides evolutionary insights into its medicinal properties. Commun Biol 4:1–12

    Article  Google Scholar 

  • Chakraborty A, Mahajan S, Jaiswal SK et al (2021b) Genome sequencing of turmeric provides evolutionary insights into its medicinal properties. Commununication Biology 4:1193. https://doi.org/10.1038/s42003-021-02720-y

    Article  CAS  Google Scholar 

  • Chen M, Presting G, Barbazuk WB et al (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    Article  PubMed Central  PubMed  Google Scholar 

  • Crossa J, Pérez P, de Los CG et al (2011) Genomic selection and prediction in plant breeding. J Crop Improv 25:239–261

    Article  Google Scholar 

  • D’hont A, Denoeud F, Aury J-M, et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    Article  PubMed  Google Scholar 

  • Duo H, Hossain F, Muthusamy V, et al. (2021) Development of sub-tropically adapted diverse provitamin-A rich maize inbreds through marker-assisted pedigree selection, their characterization and utilization in hybrid breeding. https://doi.org/10.1371/journal.pone.0245497

  • Goff SA, Ricke D, Lan T-H, et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science (80- ) 296:92–100

  • Golicz AA, Bayer PE, Barker GC et al (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7:1–8

    Article  Google Scholar 

  • Gopalakrishnan S, Sharma RK, Anand Rajkumar K et al (2008) Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breed 127:131–139

    Article  CAS  Google Scholar 

  • Gorantla M, Babu PR, Lachagari R et al (2007) Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot 58:253–265. https://doi.org/10.1093/jxb/erl213

    Article  CAS  PubMed  Google Scholar 

  • Ha J, Shim S, Lee T et al (2019) Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits. Plant Biotechnol J 17:517–530

    Article  CAS  PubMed  Google Scholar 

  • Hazarika N, Acharjee S, Boruah RR et al (2021) Enhanced expression of Arabidopsis rubisco small subunit gene promoter regulated Cry1Ac gene in chickpea conferred complete resistance to Helicoverpa armigera. J Plant Biochem Biotechnol 30:243–253

    Article  CAS  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. TRENDS Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hittalmani S. (2010) Aerobic method of rice cultivation: water saving and safe environment. Green farming vision 2 1(5)

  • Huang S, Li R, Zhang Z, et al. (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet

  • Jain M, Misra G, Patel RK et al (2013) A draft genome sequence of the pulse crop chickpea (C icer arietinum L.). Plant J 74:715–729

    Article  CAS  PubMed  Google Scholar 

  • Joseph M, Gopalakrishnan S, Sharma RK et al (2004) Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Mol Breed 13:377–387

    Article  CAS  Google Scholar 

  • Kang YJ, Kim SK, Kim MY et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:1–9

    Article  Google Scholar 

  • Kang YJ, Satyawan D, Shim S et al (2015) Draft genome sequence of adzuki bean, Vigna angularis. Sci Rep 5:1–8

    Google Scholar 

  • Khan GH, Shikari AB, Vaishnavi R et al (2018) Marker-assisted introgression of three dominant blast resistance genes into an aromatic rice cultivar Mushk Budji. Sci Rep 8:1–13

    Google Scholar 

  • Krishnan SG, Singh AK, Rathour R, Nagarajan M, Bhowmick PK, Ellur RK, Vinod KK, Haritha B, Singh UD, Prakash G, Seth R, Sharma TR (2019) Rice variety, Pusa Samba 1850. Indian J Genet Plant Breed 79:109–110

    Google Scholar 

  • Krishnan NM, Pattnaik S, Deepak SA, et al. (2011) De novo sequencing and assembly of Azadirachta indica fruit transcriptome. Curr Sci 1553–1561

  • Lachagari VBR, Gupta R, Lekkala SP, et al. (2019) Whole genome sequencing and comparative genomic analysis reveal allelic variations unique to a purple colored rice landrace (Oryza sativa ssp. Indica cv. Purpleputtu). Front Plant Sci 10:. https://doi.org/10.3389/fpls.2019.00513

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23:184–186

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:1–5

    Article  Google Scholar 

  • Lin Y, Min J, Lai R, et al. (2017) Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics. Gigascience 6:gix023

  • Liu Y, Du H, Li P et al (2020) Pan-genome of wild and cultivated soybeans. Cell 182:162–176

    Article  CAS  PubMed  Google Scholar 

  • Mannur DM, Babbar A, Thudi M, Sabbavarapu MM (2019) Super Annigeri 1 and improved JG 74 : two Fusarium wilt-resistant introgression lines developed using marker-assisted backcrossing approach in chickpea (Cicer arietinum L.). 1–13

  • Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):7116. https://doi.org/10.1038/nature11543

    Article  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohapatra T, (2012) Molecular Plant Breeding CPBSF 32–34

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paterson AH, Bowers E, Bruggmann R (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

  • Peters K, Breitsameter L, Gerowitt B (2014) Impact of climate change on weeds in agriculture: a review. Agron Sustain Dev 34:707–721

    Article  Google Scholar 

  • Potlannagari RS. Parashuram S. Patil PG. Karuppannan DB. Sharma J. Sangnure VR. et al. (2022) Reference quality genome sequence of Indian pomegranate cv.‘Bhagawa’ (Punica granatum L.) Front Plant Sci 2678

  • Ravindra Babu P, Chandra Sekhar A, Ithal N et al (2002) Annotation and BAC/PAC localization of nonredundant ESTs from drought-stressed seedlings of an indica rice. J Genet 81:25–44. https://doi.org/10.1007/BF02715867

    Article  PubMed  Google Scholar 

  • Ribaut JM, De Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:213–218

    Article  PubMed  Google Scholar 

  • Sarkar D, Mahato AK, Satya P et al (2017) The draft genome of Corchorus olitorius cv. JRO-524 (Navin). Genomics Data 12:151–154

    Article  PubMed Central  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science (80-) 326:1112–1115

  • Shah RA, Bakshi P, Sharma N, et al. (2021) Diversity assessment and selection of superior Persian walnut (Juglans regia L.) trees of seedling origin from North-Western Himalayan region. Resour Environ Sustain 3:100015

  • Sharma R, Aggarwal RAK, Kumar R et al (2002) Construction of an RAPD linkage map and localization of QTLs for oleic acid level using recombinant inbreds in mustard (Brassica juncea). Genome 45:467–472

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Srivastava P, Mavi GS et al (2021) Resurrection of wheat cultivar PBW343 using marker-assisted gene pyramiding for rust resistance. Front Plant Sci 12:570408

    Article  PubMed Central  PubMed  Google Scholar 

  • Shaw RK, Shen Y, Zhao Z, et al. (2021) Molecular breeding strategy and challenges towards improvement of downy mildew resistance in cauliflower (Brassica oleracea var. botrytis L.). Front Plant Sci 1262

  • Shirasawa K, Chahota R, Hirakawa H (2021) A Chromosome-scale draft genome sequence of horsegram (Macrotyloma uniflorum). BioRxiv

  • Singh S, Sidhu JS, Huang N (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102:1011–1015

    Article  CAS  Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK et al (2012) The first draft of the pigeon pea genome sequence. J Plant Biochem Biotechnol 21:98–112

    Article  PubMed  Google Scholar 

  • Singh NK, Mahato AK, Jayaswal PK, et al. (2016a) Origin, diversity and genome sequence of mango (Mangifera indica L.) Indian J Hist Sci 51:355–368

  • Singh R, Singh Y, Xalaxo S et al (2016b) From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci 242:278–287. https://doi.org/10.1016/j.plantsci.2015.08.008

  • Singh RK, Sharma RK, Singh AK et al (2004) Suitability of mapped sequence tagged microsatellite site markers for establishing distinctness, uniformity and stability in aromatic rice. Euphytica 135:135–143

    Article  CAS  Google Scholar 

  • Singh AK, Gopalakrishnan S, Ellur RK, Bhowmick PK, Nagarajan M, Vinod KK, Haritha B, Prabhu KV, Khanna A, Yadav A, Singh VK, Singh UD, Mondal KK, Prakash G, Kumar D, Atwal SS, Seth R (2017) Rice variety, Pusa Basmati 1728. Indian J Genet Plant Breed 77:584

    Google Scholar 

  • Singh AK, Singh VP, Zaman FU, Hariprasad AS (2005) Promoting long and extra-long grain aromatic rice varieties for improving productivity and production. Scented rices of Uttar Pradesh and Uttaranchal 57–63

  • Singhal T, Satyavathi CT, Singh SP et al (2021) Multi-environment quantitative trait loci mapping for grain iron and zinc content using bi-parental recombinant inbred line mapping population in pearl millet. Front Plant Sci 12:659789

    Article  PubMed Central  PubMed  Google Scholar 

  • Sundaram R, Sujatha K, Natarajkumar P (2011) Marker assisted breeding for development of bacterial blight resistant rice

  • Upadhyay AK, Chacko AR, Gandhimathi A et al (2015) Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biol 15:1–20

    Article  CAS  Google Scholar 

  • Valliyodan B, Cannon SB, Bayer PE et al (2019) Construction and comparison of three reference-quality genome assemblies for soybean. Plant J 100:1066–1082

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83

    Article  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Shi C, Thudi M et al (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Roorkiwal M, Sun S et al (2021) A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599:622–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Yu S, Tong C et al (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15:R39. https://doi.org/10.1186/gb-2014-15-2-r39

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang W, Mauleon R, Hu Z et al (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:43–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  CAS  PubMed  Google Scholar 

  • Yadava DK, Hossain F, Choudhury PR, Kumar D, Singh AK, Sharma TR, Mohapatra T (2022) Crop cultivars developed through molecular breeding, 2nd edn. Indian Council Agric Res, New Delhi, p 80

    Google Scholar 

  • Zhao Q, Feng Q, Lu H et al (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50:278–284

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH, Tomecek MB, Gealy DR (2010) Competitive interactions between cultivated and red rice as a function of recent and projected increases in atmospheric carbon dioxide. Agron J 102:118–123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PK conceived the idea and designed the article; AZ and PK are responsible for literature mining and wrote the draft manuscript; PK, RS, and AK reviewed and edited the manuscript. All the authors have read and approved the manuscript.

Corresponding author

Correspondence to Pankaj Kumar.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadokar, A., Kumar, P., Kumar, A. et al. Insight into the Molecular Breeding Research Status for Crop Improvement in India: Prospects and Achievements. Plant Mol Biol Rep 41, 537–558 (2023). https://doi.org/10.1007/s11105-023-01395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-023-01395-5

Keywords

Navigation