Skip to main content
Log in

On separability of the unbounded norm topology

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

In this paper we continue the investigation of topological properties of the unbounded norm (un-)topology in normed lattices. We characterize separability and second countability of the un-topology in terms of properties of the underlying normed lattice. We apply our results to prove that an order continuous Banach function space X over a semi-finite measure space is separable if and only if it has a \(\sigma \)-finite carrier and is separable with respect to the topology of local convergence in measure. We also address the question when a normed lattice is a normal space with respect to the un-topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. Graduate Studies in Mathematics, vol. 50. American Mathematical Society, Providence, RI (2002)

  2. Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Graduate Texts in Mathematics, vol. 233. Springer, New York (2006)

  3. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht, Reprint of the 1985 original (2006)

  4. Bogachev, V.I.: Measure Theory, vol. I. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  5. Dabboorasad, Y.A., Emelyanov, E.Y., Marabeh, M.A.A.: \(u\tau \)-convergence in locally solid vector lattices. Positivity 22(4), 1065–1080 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng, Y., de Jeu, M.: Vector lattices with a Hausdorff uo-Lebesgue topology. J. Math. Anal. Appl 505(1), 12545530 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, Y., O’Brien, M., Troitsky, V.G.: Unbounded norm convergence in Banach lattices. Positivity 21(3), 963–974 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. DeMarr, R.: Partially ordered linear spaces and locally convex linear topological spaces. Illinois J. Math. 8, 601–606 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Drnovšek, R.: Common invariant subspaces for collections of operators. Integr. Equ. Oper. Theory 39(3), 253–266 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dugundji, J.: Topology. Allyn and Bacon, Inc., Boston, Mass., (1966)

  11. Fremlin, D.H.: Measure theory. Vol. 3. Torres Fremlin, Colchester, 2004. Measure algebras, Corrected second printing of the original (2002)

  12. Gao, N.: Unbounded order convergence in dual spaces. J. Math. Anal. Appl. 419(1), 347–354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, N., Troitsky, V.G., Xanthos, F.: Uo-convergence and its applications to Cesàro means in Banach lattices. Israel J. Math. 220(2), 649–689 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, N., Xanthos, F.: Unbounded order convergence and application to martingales without probability. J. Math. Anal. Appl. 415(2), 931–947 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Husain, T.: Introduction to Topological Groups. W. B. Saunders Co., Philadelphia (1966)

    MATH  Google Scholar 

  16. Kandić, M., Li, H., Troitsky, V.G.: Unbounded norm topology beyond normed lattices. Positivity 22(3), 745–760 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kandić, M., Marabeh, M.A.A., Troitsky, V.G.: Unbounded norm topology in Banach lattices. J. Math. Anal. Appl. 451(1), 259–279 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kandić, M., Taylor, M.A.: Metrizability of minimal and unbounded topologies. J. Math. Anal. Appl. 466(1), 144–159 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaplan, S.: On unbounded order convergence. Real Anal. Exchange 23(1), 175–184 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kelley, J. L., Namioka, I.: Linear topological spaces. Graduate Texts in Mathematics, No. 36, Springer-Verlag, New York-Heidelberg, (1976)

  21. Lozanovskiĭ, G. Y., A. A. Mekler. Completely linear functionals and reflexivity in normed linear lattices. Izv. Vysš Učebn. Zaved. Matematika, 66(11) 47–53, (1967)

  22. Luxemburg, W.A.J.: Notes on Banach function spaces. XIVb. Nederl. Akad. Wetensch. Proc. Ser. A 68=Indag. Math., 27:240–248, (1965)

  23. Luxemburg, W.A.J.: Notes on Banach function spaces. XVIb. Nederl. Akad. Wetensch. Proc. Ser. A 68=Indag. Math., 27:658–667, (1965)

  24. Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces. Vol. I. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, (1971)

  25. Meyer-Nieberg, P.: Charakterisierung einiger topologischer und ordnungstheoretischer Eigenschaften von Banachverbänden mit Hilfe disjunkter Folgen. Arch. Math. 24, 640–647 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer-Verlag, Berlin (1991)

    Book  MATH  Google Scholar 

  27. Nakano, H.: Ergodic theorems in semi-ordered linear spaces. Ann. Math. 2(49), 538–556 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ross, K.A., Stone, A.H.: Products of separable spaces. Am. Math. Monthly 71, 398–403 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schaefer, H.H.: Topological vector spaces. Springer-Verlag, New York-Berlin, Third printing corrected, Graduate Texts in Mathematics, Vol. 3 (1971)

  30. Taylor, M.A.: Completeness of unbounded convergences. Proc. Am. Math. Soc. 146(8), 3413–3423 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Taylor, M.A.: Unbounded topologies and \(uo\)-convergence in locally solid vector lattices. J. Math. Anal. Appl. 472(1), 981–1000 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Willard, S.: General Topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., (1970)

  33. Zaanen, A.C.: Introduction to Operator Theory in Riesz Spaces. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  34. Zabeti, O.: Unbounded absolute weak convergence in Banach lattices. Positivity 22(2), 501–505 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for the helpful comments that improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kandić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author acknowledges financial support from the Slovenian Research Agency, Grants Nos. P1-0222, J1-2453 and J1-2454. The second author acknowledges financial support from the Slovenian Research Agency, Grant No. P1-0292.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandić, M., Vavpetič, A. On separability of the unbounded norm topology. Positivity 27, 43 (2023). https://doi.org/10.1007/s11117-022-00967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11117-022-00967-1

Keywords

Mathematics Subject Classification

Navigation