Skip to main content
Log in

The Normal Contraction Property for Non-Bilinear Dirichlet Forms

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We analyse the class of convex functionals \(\mathcal {E}\) over L2(X,m) for a measure space (X,m) introduced by Cipriani and Grillo (J. Reine Angew. Math. 562, 201–235 2003) and generalising the classic bilinear Dirichlet forms. We investigate whether such non-bilinear forms verify the normal contraction property, i.e., if \(\mathcal {E}(\phi \circ f) \leq \mathcal {E}(f)\) for all f ∈L2(X,m), and all 1-Lipschitz functions \(\phi : \mathbb {R} \to \mathbb {R}\) with ϕ(0) = 0. We prove that normal contraction holds if and only if \(\mathcal {E}\) is symmetric in the sense \(\mathcal {E}(-f) = \mathcal {E}(f),\) for all f ∈L2(X,m). An auxiliary result, which may be of independent interest, states that it suffices to establish the normal contraction property only for a simple two-parameter family of functions ϕ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Sharing

not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, 2nd edn. Basel, Birkhäuser (2008)

    Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam. 29, 969–996 (2013)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195, 289–391 (2014)

    Article  MathSciNet  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163, 1405–1490 (2014)

    Article  MathSciNet  Google Scholar 

  5. Ambrosio, L., Gigli, N., Savaré, G.: Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43, 339–404 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bakry, D., Émery, M.: Diffusions hypercontractives, in séminaire de probabilités, XIX, 1983/84, vol. 1123 of Lecture Notes in Math, pp 177–206. Springer, Berlin (1985)

    Google Scholar 

  7. Barthélemy, L: Invariance d’un convexe fermé par un semi-groupe associé à une forme non-linéaire. Abstr. Appl. Anal. 1, 237–262 (1996)

    Article  MathSciNet  Google Scholar 

  8. Bénilan, P., Crandall, M.G.: Completely accretive operators, in Semigroup theory and evolution equations (Delft, 1989), vol. 135 of Lecture Notes in Pure and Appl. Math., Dekker, New York, pp. 41–75 (1991)

  9. Bénilan, P., Picard, C.: Quelques aspects non linéaires du principe du maximum, in séminaire de théorie du Potentiel. No. 4 (Paris, 1977/1978), vol. 713 of Lecture Notes in Math, pp 1–37. Springer, Berlin (1979)

    Google Scholar 

  10. Beurling, A., Deny, J.: Dirichlet spaces. Proc. Nat. Acad. Sci. USA 45, 208–215 (1959)

    Article  Google Scholar 

  11. Biroli, M., Mosco, U.: Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6, 37–44 (1995)

    MathSciNet  Google Scholar 

  12. Biroli, M., Vernole, P. G.: Strongly local nonlinear Dirichlet functionals and forms. Adv. Math. Sci. Appl. 15, 655–682 (2005)

    MathSciNet  Google Scholar 

  13. Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space, Vol. 14 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (1991)

    Book  Google Scholar 

  14. Brezis, H.: Opérateurs Maximaux Monotones Et Semi-Groupes De Contractions Dans Les Espaces De Hilbert North-Holland Mathematics Studies vol. 5, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc. New York (1973)

  15. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Universitext, Springer, New York (2011)

    Book  Google Scholar 

  16. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  Google Scholar 

  17. Cipriani, F., Grillo, G.: Nonlinear Markov semigroups, nonlinear Dirichlet forms and applications to minimal surfaces. J. Reine Angew. Math. 562, 201–235 (2003)

    MathSciNet  Google Scholar 

  18. Claus, B.: Nonlinear Dirichlet Forms. PhD thesis, Technischen Universität Dresden (2021)

  19. Claus, B.: Energy spaces, Dirichlet forms and capacities in a nonlinear setting, Potential Anal (To appear)

  20. Creo, S., Lancia, M.R.: Fractional (s,p)-Robin-Venttsel’ problems on extension domains, NoDEA Nonlinear Differential Equations Appl., 28, pp. Paper No. 31, 33 (2021)

  21. Dal Maso, G.: An introduction to Γ-Convergence, Vol. 8 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1993)

    Google Scholar 

  22. De Giorgi, E., Buttazzo, G., Dal Maso, G.: On the lower semicontinuity of certain integral functionals, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 74, 274–282 (1983)

    Google Scholar 

  23. Dolbeault, J., Nazaret, B., Savaré, G.: On the Bakry-Emery criterion for linear diffusions and weighted porous media equations. Commun. Math. Sci. 6, 477–494 (2008)

    Article  MathSciNet  Google Scholar 

  24. Feo, F., Vázquez, J. L., Volzone, B.: Anisotropic p-Laplacian evolution of fast diffusion type. Adv. Nonlinear Stud. 21, 523–555 (2021)

    Article  MathSciNet  Google Scholar 

  25. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, Vol. 19 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co. Berlin, extended ed. (2011)

  26. Hinz, M., Koch, D., Meinert, M.: Sobolev spaces and calculus of variations on fractals, in Analysis, Probability and Mathematical Physics on Fractals. World Scientific 419–450 (2020)

  27. Hofmann, M.: Spectral theory, Clustering Problems and Differential Equations on Metric Graphs. PhD thesis, Universidade de Lisboa (2021)

  28. Hurtado, E. J.: Non-local diffusion equations involving the fractional p(⋅)-Laplacian. J. Dyn. Diff. Equat. 32, 557–587 (2020)

    Article  MathSciNet  Google Scholar 

  29. Jost, J.: Nonlinear Dirichlet forms, in New directions in Dirichlet forms, vol. 8 of AMS/IP Stud. Adv. Math., Amer. Math. Soc., Providence RI, pp .1–47 (1998)

  30. Kell, M.: q-heat flow and the gradient flow of the Renyi entropy in the p-Wasserstein space. J. Funct Anal. 271, 2045–2089 (2016)

    Article  MathSciNet  Google Scholar 

  31. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169, 903–991 (2009)

    Article  MathSciNet  Google Scholar 

  32. Luise, G., Savaré, G.: Contraction and regularizing properties of heat flows in metric measure spaces. Discrete Contin. Dyn. Syst. Ser. S 14, 273–297 (2021)

    MathSciNet  Google Scholar 

  33. Ma, Z. -M., Röckner, M.: Introduction to the theory of (non-symmetric) Dirichlet forms. Universitext Springer, Berlin (2012)

    Google Scholar 

  34. Meinert, M.: Partial Differential Equations on Fractals. Existence, Uniqueness and Approximation Results. PhD thesis, Universität Bielefeld (2020)

  35. Mugnolo, D.: Semigroup Methods for Evolution Equations on Networks, Understanding Complex Systems. Springer, Cham (2014)

    Book  Google Scholar 

  36. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. IV, p 617. Acad Press, New York (1978)

    Google Scholar 

  37. Schmidt, M.: Energy Forms. PhD thesis, Friedrich-Schiller-Universität Jena (2016)

  38. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16, 243–279 (2000)

    Article  MathSciNet  Google Scholar 

  39. Sturm, K.-T.: On the geometry of metric measure spaces. I, Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  Google Scholar 

  40. Sturm, K.-T.: On the geometry of metric measure spaces. II Acta Math. 196, 133–177 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Giuseppe Savaré for numerous stimulating and helpful comments and to the anonymous referee for useful suggestions. We thank the organisers of the CEREMADE Young Researcher Winter School 2022, where part of the work was done.

Funding

The first author has been funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 754362. Partial support has been obtained from the EFI ANR-17-CE40-0030 Project of the French National Research Agency. The second author was supported by ERC Starting Grant 680275 “MALIG.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Brigati.

Ethics declarations

Conflict of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brigati, G., Hartarsky, I. The Normal Contraction Property for Non-Bilinear Dirichlet Forms. Potential Anal 60, 473–488 (2024). https://doi.org/10.1007/s11118-022-10057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-022-10057-2

Keywords

Mathematics Subject Classification (2010)

Navigation