Skip to main content
Log in

RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

In this paper, a new method to fuse low resolution multispectral and high resolution RGB images is introduced, in order to detect Gramineae weed in rice fields with plants at 50 days after emergence (DAE).The images are taken from a fixed-wing unmanned aerial vehicle (UAV) at 60 and 70 m altitude. The proposed method combines the texture information given by a high resolution red–green–blue (RGB) image and the reflectance information given by a low resolution multispectral (MS) image, to obtain a fused RGB-MS image with better weed discrimination features. After analyzing the normalized difference vegetation index (NDVI) and normalized green red difference index (NGRDI) for weed detection, it was found that NGRDI presents better features. The fusion method consists of decomposing the RGB image using the intensity, hue and saturation (IHS) transformation, then, a second order Haar wavelet transformation is applied to the intensity layer (I) and the NGRDI image. From this transformation, the low–low (LL) coefficients of the NGRDI image are replaced by the LL coefficients of the I layer. Finally, the fused image is obtained by transforming the new wavelet coefficients to RGB space. To test the method, a one hectare experimental plot with rice plants at 50 DAE with Gramineae weeds was selected. Additionally, to compare the performance of the method, two indices were used, specifically, the M/MGT index which is the percentage of detected weed area, and the MP index which indicates the precision of weed detection. These indices were evaluated in four validation zones using three Neural Networks (NN) detection systems based on three types of images; namely, RGB, RGB + NGRDI, and fused RGB-NGRDI. The best weed detection performance was obtained by the NN with the fused image, with M/MGT index between 80 and 108% and MP between 70 and 85%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Castro, A. I., Jurado-Exposito, M. T., Gomez-Casero, M., & Lopez-Granados, F. (2012). Applying neural networks to hyperspectral and multispectral field data for discrimination of cruciferous weeds in winter crops. The Scientific World Journal. https://doi.org/10.1100/2012/630390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauhan, B. S., & Johnson, D. E. (2011). Row spacing and weed control timing affect yield of aerobic rice. Field Crops Research, 121(1), 226–231.

    Article  Google Scholar 

  • Cobb, A. H., & Reade, J. (2010). Herbicides and plant physiology. Oxford, UK: Willey-Blackwell.

    Book  Google Scholar 

  • Ehlers, M., Klonus, S., Astrand, P., & Rosso, P. (2010). Multi-sensor image fusion for pansharpening in remote sensing. International Journal of Image and Data Fusion, 1(1), 25–45.

    Article  Google Scholar 

  • Fonseca, L., Namikawa, L., Castejon, E., Carvalho, L., Pinho, C., & Pagamisse, A. (2011). Image fusion for remote sensing applications. Y. Zheng (Ed.), Image fusion and its applications. InTech, https://doi.org/10.5772/22899. Available from: https://www.intechopen.com/books/image-fusion-and-itsapplications/image-fusion-for-remote-sensing-applications.

  • Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76–87.

    Article  Google Scholar 

  • Gray, C. J., Shaw, D. R., Gerard, P. D., & Bruce, L. (2008). Utility of multispectral imagery for soybean and weed species differentiation. Weed Technology, 22(4), 713–718.

    Article  Google Scholar 

  • Hagan, M., Demuth, H. B., Beale, M. H., & De Jesús, O. (1996). Neural network design (2nd ed.). Stillwater, OK, USA: Martin Hagan.

    Google Scholar 

  • Haralick, R., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC (3), 610–621.

  • Hong, G., Zhang, Y., & Mercer, B. (2009). A wavelet and IHS integration method to fuse high resolution SAR with moderate resolution multispectral images. Photogrammetric Engineering & Remote Sensing, 75, 1213–1223.

    Article  Google Scholar 

  • Johnson, D., Wopereis, M., Mbodi, D., Diallo, S., Power, S., & Haefele, S. (2004). Timing of weed management and yield losses due to weeds in irrigated rice in the Sahel. Field Crop Research, 85, 31–42.

    Article  Google Scholar 

  • Juraimi, A., Mohamad, M., Begum, M., Anuar, A., & Azmy, M. (2009). Critical period of weed competition in direct seeded rice under saturated and flooded conditions. Journal of Tropical Agricultural Science, 32(2), 305–316.

    Google Scholar 

  • Li, S., Kang, X., & Fang, L. (2016). Pixel-level image fusion: A survey of the state of the art. Information Fusion, 33, 100–112. https://doi.org/10.1016/j.inffus.2016.05.004.

    Article  Google Scholar 

  • López-Granados, F. (2011). Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Research, 51(1), 1–11.

    Article  Google Scholar 

  • Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., & Stachniss, C. (2017). UAV-based crop and weed classification for smart farming. IEEE international conference on robotics and automation, ICRA 2017 (pp. 3024–3031). Singapore: IEEE.

  • Louargant, M., Villette, S., Jones, G., Vigneau, N., Paoli, J., & Gée, C. (2017). Weed detection by UAV: Simulation of the impact of spectral mixing in multispectral images. Precision Agriculture, 18(6), 932–951. https://doi.org/10.1007/s11119-017-9528-3.

    Article  Google Scholar 

  • Mather, P. M., & Koch, M. (2011). Computer processing of remotely-sensed images: An introduction. Oxford, UK: Wiley.

    Book  Google Scholar 

  • Pantazi, X., Tamouridou, A., Alexandridis, T., Lagopodi, A., Kashefi, J., & Moshou, D. (2017). Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imaginery. Computers and Electronics in Agriculture, 139, 224–230.

    Article  Google Scholar 

  • Pohl, C., & Genderen, J. (1998). Multisensor image fusion in remote sensing: Concepts. International Journal of Remote Sensing, 19(5), 823–854.

    Article  Google Scholar 

  • Ramirez, J. (2004). Weed population dynamics in rice fields in the center, plateau and north of Tolima Region (in Spanish, Dinámica Poblacional de Malezas del Cultivo de Arroz en las Zonas Centro, Meseta y Norte del Departamento del Tolima). Bogota, Colombia: Universidad Nacional de Colombia.

    Google Scholar 

  • Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the earth resources technology satellite symposium NASA SP-351 (Vol. 1, pp. 309–317). Washington D.C.

  • Sanli, F., Abdikna, S., Esetlili, M., & Sunar, F. (2016). Evaluation of image fusion methods using PALSAR, RADARSAT-1 and SPOT images for land use/land cover classification. Journal of Indian Society of Remote Sensing, 45(4), 591–601. https://doi.org/10.1007/s12524-016-0625-y.

    Article  Google Scholar 

  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675, PMID 22930834 (on Google Scholar).

  • Sonka, M., Hlavac, V., & Boyle, R. (1993). Image processing, analysis and machine vision. Boston, USA: Springer.

    Book  Google Scholar 

  • Torres-Sánchez, J., Peña-Barragán, J. M., Gómez-Candón, D., De Castro, A. I., & López-Granados, F. (2013). Imagery from unmanned aerial vehicles for early site specific weed management. In: J. V. Stafford (Ed.), Precision agriculture 2013. Wageningen, The Netherlands: Wageningen Academic Publishers, https://doi.org/10.3920/978-90-8686-778-3_22.

  • Wald, L. (2002). Data fusion: Definitions and architecturesFusion of images of different spatial resolution. Paris, France: Presses de l’Ecole, Ecole des Mines de Paris. pp. 200

  • Zhang, Y. (2004). Understanding image fusion. Photogrammetric Engineering and Remote Sensing, 70(6), 657–661.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Barrero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrero, O., Perdomo, S.A. RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields. Precision Agric 19, 809–822 (2018). https://doi.org/10.1007/s11119-017-9558-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-017-9558-x

Keywords

Navigation