Skip to main content
Log in

A new color index for vegetation segmentation and classification

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Color vegetation indices enable various precision agriculture applications by transforming a 3D-color image into its 1D-grayscale counterpart, such that the color of vegetation pixels can be accentuated, while those of nonvegetation pixels are attenuated. The quality of the transformation is essential to the outcomes of computational analyses to follow. The objective of this article is to propose a new vegetation index, the Elliptical Color Index (ECI), which leverages the quadratic discriminant analysis of 3D-color images along a normalized red (r)—green (g) plane. The proposed index is defined as an ellipse function of r and g variables with a shape parameter. For comparison, the ECI’s performance was evaluated along with six other indices, by using 240 color images as a test sample captured from four vegetation species under different illumination and background conditions, together with the corresponding ground-truth patterns. For comparative analysis, the receiver operating characteristic (ROC) and the precision–recall (PR) curves helped quantify the overall performance of vegetation segmentation across all of the vegetation indices evaluated. For a practical appraisal of vegetation segmentation outcomes, this paper applied Gaussian filtering, and then the thresholding method of Otsu, to the grayscale images transformed by each of the indices. Overall, the test results confirmed that ECI outperforms the other indices, in terms of the area under the curves of ROC and PR, as well as other performance metrics, including total error, precision, and F-score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad, J., Muhammad, K., Ahmad, I., Ahmad, W., Smith, M. L., Smith, L. N., et al. (2018). Visual features based boosted classification of weeds for real-time selective herbicide sprayer systems. Computers in Industry, 98, 23–33.

    Article  Google Scholar 

  • Bah, M. D., Hafiane, A., & Canals, R. (2018). Deep learning with unsupervised data labeling for weeds detection on UAV images. arXiv preprint, arXiv, 1805.12395.

    Google Scholar 

  • Bai, X. D., Cao, Z. G., Wang, Y., Yu, Z. H., Zhang, X. F., & Li, C. N. (2013). Crop segmentation from images by morphology modeling in the CIE L*a*b* color space. Computers and Electronics in Agriculture, 99, 21–34.

    Article  Google Scholar 

  • Bai, X., Cao, Z., Wang, Y., Yu, Z., Hu, Z., Zhang, X., et al. (2014). Vegetation segmentation robust to illumination variations based on clustering and morphology modeling. Biosystems Engineering, 125(September), 80–97. https://doi.org/10.1016/j.biosystemseng.

    Article  Google Scholar 

  • Barbosa, B. D. S., Ferraz, G. A. S., Gonçalves, L. M., Marin, D. B., Maciel, D. T., Ferraz, P. F. P., et al. (2019). RGB vegetation indices applied to grass monitoring: A qualitative analysis. Agronomy Research, 17(2), 349–357.

    Google Scholar 

  • Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., et al. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39, 79–87.

    Article  Google Scholar 

  • Bosilj, P., Aptoula, E., Duckett, T., & Cielniak, G. (2019). Transfer learning between crop types for semantic segmentation of crops versus weeds in precision agriculture. Journal of Field Robotics. https://doi.org/10.1002/rob.21869.

    Article  Google Scholar 

  • Burgos-Artizzu, X. P., Ribeiro, A., Guijarro, M., & Pajares, G. (2011). Real-time image processing for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture, 75(2), 337–346.

    Article  Google Scholar 

  • Cheng, X. H., Sun, Y., & Wang, J. (2001). Color image segmentation: advances and prospects. Pattern Recognition, 34, 2259–2281.

    Article  Google Scholar 

  • Gee, Ch, Bossu, J., Jones, G., & Truchetet, F. (2008). Crop/weed discrimination in perspective agronomic images. Computers and Electronics in Agriculture, 60, 49–59.

    Article  Google Scholar 

  • Golzarian, M. R., & Frick, R. A. (2011). Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis. Plant Methods, 7, 28–38. https://doi.org/10.1186/1746-4811-7-28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Golzarian, M. R., Lee, M.-K., & Desbiolles, J. M. A. (2012). Evaluation of color indices for improved segmentation of plant images. Transactions of the ASABE, 55(1), 261–273.

    Article  Google Scholar 

  • Guerrero, J. M., Pajares, G., Montalvo, M., Romeo, J., & Guijarro, M. (2012). Support vector machines for crop/weeds Identification in maize fields. Expert Systems with Applications, 39, 11149–11155.

    Article  Google Scholar 

  • Guijarro, M., Pajares, G., Riomoros, I., Herrera, P. J., Burgos-Artizzu, X. P., & Ribeiro, A. (2011). Automatic segmentation of relevant textures in agricultural images. Computers and Electronics in Agriculture, 75(1), 75–83.

    Article  Google Scholar 

  • Guo, W., Rage, U. K., & Ninomiya, S. (2013). Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Computers and Electronics in Agriculture, 96, 58–66.

    Article  Google Scholar 

  • Hague, T., Tillet, N., & Wheeler, H. (2006). Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture, 7(1), 21–32.

    Article  Google Scholar 

  • Hamuda, E., Glavin, M., & Jones, E. (2016). A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125, 184–199.

    Article  Google Scholar 

  • Hassanein, M., Lari, Z., & El-Sheimy, N. (2018). A new vegetation segmentation approach for cropped fields based on threshold detection from hue histogram. Sensors, 18(4), 1253. https://doi.org/10.3390/s18041253.

    Article  Google Scholar 

  • Hunt, E. R., Cavigelli, M., Daughtry, C. S. T., McMurtrey, J. E., & Walthall, C. L. (2005). Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, 6, 359–378.

    Article  Google Scholar 

  • Kataoka, T., Kaneko, T., Okamoto, H., & Hata, S. (2003). Crop growth estimation system using machine vision. In Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (pp 1079–1083).

  • Kazmi, W., Garcia-Ruizb, F., Nielsenb, J., Rasmussen, J., & Andersen, H. (2015). Detecting creeping thistle in sugar beet fields using vegetation indices. Computers and Electronics in Agriculture, 112, 10–19.

    Article  Google Scholar 

  • Lee, K.-J., & Lee, B.-W. (2011). Estimating canopy cover from color digital camera image of rice field. Journal of Crop Science and Biotechnology, 14(2), 151–155.

    Article  Google Scholar 

  • Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16, 65–70.

    Article  Google Scholar 

  • Ma, J., Du, K., Zhang, L., Zheng, F., Chu, J., & Sun, Z. (2017). A segmentation method for greenhouse vegetable foliar disease spots images using color information and region growing. Computers and Electronics in Agriculture, 142, 110–117.

    Article  Google Scholar 

  • Mao, W., Wang, Y., & Wang, Y. (2003). Real-time detection of between-row weeds using machine vision. In ASAE Paper No. 031004, Las Vegas, Nev., USA.

  • Meyer, G. E., & Neto, J. C. (2008). Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 63, 282–293.

    Article  Google Scholar 

  • Milioto, A., Lottes, P., & Stachniss, C. (2018). Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs. In Proceedings of IEEE Internationall Conference on Robotics and Automation (ICRA) (pp. 2229–2235). Brisbane, Australia.

  • Neto, J. C., Meyer, G. E., & Jones, D. D. (2006). Individual leaf extractions from young canopy images using Gustafson-Kessel clustering and a genetic algorithm. Computers and Electronics in Agriculture, 51, 66–85.

    Article  Google Scholar 

  • Nieuwenhuizen, A. T., Hofstee, J. W., & van Henten, E. J. (2010). Adaptive detection of volunteer potato plants in sugar beet fields. Precision Agriculture, 11, 433–447.

    Article  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.

    Article  Google Scholar 

  • Provost, F., Fawcett, T., & Kohavi, R. (1998). The case against accuracy estimation for comparing induction algorithms. In Proceedings of the 15th International Conference on Machine Learning (San Francisco, USA) (pp. 445–453).

  • Rico-Fernández, M. P., Rios-Cabrera, R., Castelán, M., Guerrero-Reyes, H.-I., & Juarez-Maldonado, A. (2019). A contextualized approach for segmentation of foliage in different crop species. Computers and Electronics in Agriculture, 156, 378–386.

    Article  Google Scholar 

  • Sazbi, S., Abbaspour-Gilandeh, Y., & Garcia-Mateos, G. (2018). A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms. Computers in Industry, 98, 80–89.

    Article  Google Scholar 

  • Suh, H. K., Hofstee, J. W., & van Henten, E. J. (2018). Improved vegetation segmentation with ground shadow removal using an HDR camera. Precision Agriculture, 19, 218–237.

    Article  Google Scholar 

  • Tang, L., Tian, L., & Steward, B. L. (2003). Classification of broadleaf and grass weeds using Gabor wavelets and an artificial neural network. Transactions of the ASAE, 46(4), 1247–1254.

    Article  Google Scholar 

  • Tharwat, A. (2016). Linear vs quadratic discriminant analysis classifier: A tutorial. International Journal of Applied Pattern Recognition, 3(2), 145–180.

    Article  Google Scholar 

  • Torres-Sánchez, J., Peña, J. M., de Castro, A. I., & López-Granados, F. (2014). Multitemporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture, 103, 104–113. https://doi.org/10.1016/j.compag.2014.02.009.

    Article  Google Scholar 

  • Tosaka, N., Hata, S., Okamoto, H., & Takai, M. (1998). Automatic thinning mechanism of sugar beets (part 2). Journal of JSAM, 60(2), 75–82.

    Google Scholar 

  • Woebbecke, D., Meyer, K., & Mortensen, D. (1995). Color indices for weed identification under various soil, residue and lighting conditions. Transactions of the ASAE, 38, 259–269.

    Article  Google Scholar 

  • Wong, W. K., Chekima, A., Mariappan, M., Wee, C. C., Khoo, B., & Nadarajan, M. (2014). Genetic Algorithm optimization and feature selection for a support vector machine weed recognition system in Malaysia at critical stage of development. World Applied Sciences Journal, 30, 1953–1959.

    Google Scholar 

  • Ye, M., Cao, Z., Yu, Z., & Bai, X. (2015). Crop feature extraction from images with probabilistic superpixel Markov random field. Computers and Electronics in Agriculture, 114(June), 247–260. https://doi.org/10.1016/j.compag.2015.04.010.

    Article  Google Scholar 

  • Yu, Z., Cao, Z., Wu, X., Bai, X., Qin, Y., Zhuo, W., et al. (2013). Automatic image-based detection technology for two critical growth stages of maize: Emergence and three-leaf stage. Agricultural and Forest Meteorology, 174–175, 65–84.

    Article  Google Scholar 

  • Zhang, X., Li, X., Zhang, B., Zhou, J., Tian, G., Xiong, Y., et al. (2018). Automated robust crop-row detection in maize fields based on position clustering algorithm and shortest path method. Computers and Electronics in Agriculture, 154, 165–175.

    Article  Google Scholar 

  • Zheng, H., Cheng, T., Li, D., Zhou, X., Yao, X., Tian, Y., et al. (2018). Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sensing, 10, 824. https://doi.org/10.3390/rs10060824.

    Article  Google Scholar 

  • Zheng, L., Shi, D., & Zhang, J. (2010). Segmentation of green vegetation of crop canopy images based on mean shift and Fisher linear discriminant. Pattern Recognition, 31, 920–925.

    Article  Google Scholar 

  • Zheng, L., Zhang, J., & Wang, Q. (2009). Mean-shift-based color segmentation of images containing green vegetation. Computers and Electronics in Agriculture, 65, 93–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Kyu Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MK., Golzarian, M.R. & Kim, I. A new color index for vegetation segmentation and classification. Precision Agric 22, 179–204 (2021). https://doi.org/10.1007/s11119-020-09735-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-020-09735-1

Keywords

Navigation