Skip to main content
Log in

Normalization of the crop water stress index to assess the within-field spatial variability of water stress sensitivity

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

This paper presents a novel methodology for identifying homogeneous areas within high-frequency drip-irrigated orchards and for defining the most sensitive and resistant areas of the field to water stress. The methodology proposed here is based on the assessment of water status at the tree level during mild water stress using remote sensing derived indicators which provide valuable information about the spatial distribution of the response to water stress within an orchard. The areas more resistant to water stress will maintain a good water status, while those prone to water stress will develop initial symptoms of water deficit. The study was performed over three different peach orchards that were evaluated from 2 to 3 years. Water status was monitored using high-resolution thermal imagery acquired before and after the onset of water stress. The Thermal Sensitivity Index (TSI), derived from the difference of the CWSI and the cumulated reference evapotranspiration between the two dates, demonstrated to be well related to the increase of stem water potential. The spatial distribution of TSI enables the identification of sensitive areas within a peach orchard, a first step for establishing precision drip irrigation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agam, N., Cohen, Y., Alchanatis, V., & Ben-Gal, A. (2013). How sensitive is the CWSI to changes in solar radiation? International Journal of Remote Sensing, 34, 6109–6120.

    Article  Google Scholar 

  • Bazzi, C. L., Schenatto, K., Upadhyaya, S., Rojo, F., Kizer, E., & Ko-Madden, C. (2019). Optimal placement of proximal sensors for precision irrigation in tree crops. Precision Agriculture, 20(4), 663–674.

    Article  Google Scholar 

  • Bellvert, J., Zarco-Tejada, P. J., Marsal, J., Girona, J., Gonzalez-Dugo, V., & Fereres, E. (2016). Vineyard irrigation scheduling based on airborne thermal imagery and water potential thresholds. Australian Journal of Grape and Wine Research, 22(2), 307–315.

    Article  Google Scholar 

  • Ben-Gal, A., Agam, N., Alchanatis, V., Cohen, Y., Yermiyahu, U., Zipori, I., et al. (2009). Evaluating water stress in irrigated olives: Correlation of soil water status, tree water status, and thermal imagery. Irrigation Science, 27(5), 367–376.

    Article  Google Scholar 

  • Berni, J. A. J., Zarco-Tejada, P. J., Gonzalez-Dugo, V., & Fereres, E. (2009). Remote sensing of thermal water stress indicators in peach. Acta Horticulturae, 962, 325–331.

    Google Scholar 

  • Camp, C. R., & Sadler, E. J. (1998). Site-specific crop management with a center pivot. Journal of Soil and Water Conservation, 53(4), 312–314.

    Google Scholar 

  • Cohen, Y., Alchanatis, V., Saranga, Y., Rosenberg, O., Sela, E., & Bosak, A. (2017). Mapping water status based on aerial thermal imagery: comparison of methodologies for upscaling from a single leaf to commercial fields. Precision Agriculture, 18(5), 801–822.

    Article  Google Scholar 

  • Conesa, M. R., Conejero, W., Vera, J., Ramírez-Cuesta, J. M., & Ruiz-Sánchez, M. C. (2019). Terrestrial and Remote Indexes to Assess Moderate Deficit Irrigation in Early-Maturing Nectarine Trees. Agronomy, 9(10), 630.

    Article  CAS  Google Scholar 

  • Dag, A., Cohen, Y., Alchanatis, V., Zipori, I., Sprinstin, M., Cohen, A., et al. (2015). Automated detection of malfunctions in drip-irrigated systems using thermal remote sensing in vineyards and olive orchards. In J. V. Stafford (Ed.), Proceedings of the 10th European Conference on Precision Agriculture (pp 519–525). Wageningen, The Netherlands: Wageningen Academic Publisher.

  • Dukes, M. D., & Perry, C. (2006). Uniformity testing of variable-rate center pivot irrigation control systems. Precision Agriculture, 7(3), 205–218.

    Article  Google Scholar 

  • Evans, R. G., Han, S., Schneider, S. M., & Kroeger, M. W. (1996). Precision center pivot irrigation for efficient use of water and nitrogen. In P. C. Robert, R. H. Rust, W. E. Larson (Eds.), Proceedings of the 3rd International Conference on Precision Agriculture. Madison, WI: ASA, CSSA, SSSA.

  • Fereres, E., Goldhamer, D. A., & Parsons, L. R. (2003). Irrigation water management of horticultural crops. Hortscience, 38(5), 1036–1042.

    Article  Google Scholar 

  • Fereres, E., & Soriano, M. A. (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2), 147–159.

    Article  CAS  Google Scholar 

  • Gilabert, M. A., Gandía, S., & Melia, J. (1996). Analyses of spectral-biophysical relationships for a corn canopy. Remote Sensing of Environment, 55(1), 11–20.

    Article  Google Scholar 

  • Girona, J., & Fereres, E. (2012). Peach. In P. Steduto, T. C. Hsiao, E. Fereres & D. Raes (Eds.), Crop yield response to water (pp. 392–406). Rome: FAO.

    Google Scholar 

  • Gonzalez-Dugo, V., Goldhamer, D., Zarco-Tejada, P. J., & Fereres, E. (2015). Improving the precision of irrigation in a pistachio farm using an unmanned airborne thermal system. Irrigation Science, 33(1), 43–52.

    Article  Google Scholar 

  • Gonzalez-Dugo, V., Lopez-Lopez, M., Espadafor, M., Orgaz, F., Testi, L., Zarco-Tejada, P. J., Lorite, I. J., & Fereres, E. (2019). Transpiration from canopy temperature: Implications for the assessment of crop yield in almond orchards. European Journal of Agronomy, 105, 78–85.

    Article  Google Scholar 

  • Gonzalez-Dugo, V., Zarco-Tejada, P. J., & Fereres, E. (2014). Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards. Agricultural and Forest Meteorology, 198, 94–104.

    Article  Google Scholar 

  • Hsiao, T. C., Fereres, E., Acevedo, E., & Henderson, D. W. (1976). Water stress and dynamics of growth and yield of crop plants. In  Water and plant life (Vol. 19). Ecological studies. Berlin: Springer.

  • Idso, S. B., Jackson, R. D., Pinter, P. J. J., Reginato, R. J., & Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24, 45–55.

    Article  Google Scholar 

  • Jacob, J., Udayakumar, M., & Prasad, T. G. (1995). Mesophyll conductance was inhibited more than stomatal conductance in nitrogen deficient plants. Plant Physiology and Biochemistry, 17, 55–61.

    Google Scholar 

  • Johnson, R. S., Handley, D. F., & DeJong, T. M. (1992). Long-term response of early maturing peach trees to postharvest water deficits. Journal of the American Society for Horticultural Science, 117, 881–886.

    Article  Google Scholar 

  • Jones, H. G., Stoll, M., Santos, T., Sousa, C. D., Chaves, M. M., & Grant, O. M. (2002). Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine. Journal of Experimental Botany, 53(378), 2249–2260.

    Article  CAS  Google Scholar 

  • McClymont, L., Goodwin, I., Mazza, M., Baker, N., Lanyon, D. M., Zerihun, A., et al. (2012). Effect of site-specific irrigation management on grapevine yield and fruit quality attributes. Irrigation Science, 30, 461–470.

    Article  Google Scholar 

  • O’Shaughnessy, S. A., Evett, S. R., & Colaizzi, P. D. (2015). Dynamic prescription maps for site-specific variable rate irrigation of cotton. Agricultural Water Management, 159, 123–138.

    Article  Google Scholar 

  • Radin, J. W., & Parker, L. L. (1979). Water relations of cotton plants under nitrogen deficiency. II. Environmental interactions on stomata. Plant Physiology, 64, 499–501.

    Article  CAS  Google Scholar 

  • Ramírez-Cuesta, J. M., Kilic, A., Allen, R., Santos, C., & Lorite, I. J. (2017). Evaluating the impact of adjusting surface temperature derived from landsat 7 ETM+ in crop evapotranspiration assessment using high-resolution airborne data. International Journal of Remote Sensing, 38(14), 4177–4205.

    Article  Google Scholar 

  • Sadler, E. J., Camp, C. R., Evans, D. E., & Usrey, L. J. (1996). A site-specific center pivot irrigation system for highly variable coastal plain soils. In P. C. Robert, R. H. Rust, W. E. Larson (Eds.), Proceedings of the 3rd International Conference on Precision Agriculture. Madison, WI: ASA, CSSA, SSSA.

  • Sadler, E. J., Evans, R. G., Stone, K. C., & Camp, C. R. (2005). Opportunities for conservation with precision irrigation. Journal of Soil and Water Conservation, 60(6), 371–379.

    Google Scholar 

  • Schepers, A. R., Shanahan, J. F., Liebig, M. A., Schepers, J. S., Johnson, S. H., & Luchiari, A. Jr. (2004). Appropriateness of Management Zones for Characterizing Spatial Variability of Soil Properties and Irrigated Corn Yields across Years. Agronomy Journal, 96(1), 195–203.

    Article  Google Scholar 

  • Smith, R. J., Baillie, J. N., McCarthy, A. C., Raine, S. R., & Baillie, C. P. (2010). Review of precision irrigation technologies and their application. Project Report. Toowoomba: University of Southern Queensland, National Centre for Engineering in Agriculture.

  • Testi, L., Goldhamer, D. A., Iniesta, F., & Salinas, M. (2008). Crop water stress index is a sensitive water stress indicator in pistachio trees. Irrigation Science, 26, 395–405.

    Article  Google Scholar 

  • Yan, L., Zhou, S., Cifang, W., Hongyi, L., & Feng, L. (2007). Classification of management zones for precision farming in saline soil based on multi-data sources to characterize spatial variability of soil properties. Transactions of the Chinese Society of Agricultural Engineering, 23(8), 84–89.

    Google Scholar 

  • Zarco-Tejada, P. J., Gonzalez-Dugo, V., & Berni, J. A. J. (2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 117, 322–337.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Rafa Romero, Alberto Vera and David Notario for their technical support with imagery acquisition and processing; and José S. Rubio-Asensio, Margarita Parra, Ignacio Buesa, Alejandro Martínez, Antonio Yeves, Felipe Sanz, David Hortelano and Diego Guerra for their help with field measurements.

Funding

This research was funded in the frame of the collaborative international consortium IRIDA financed under the ERA-NET Cofund Water-Works 2014 Call with Spanish national funds from the Agencia Estatal de Investigación grant PCIN-2015-263. This ERA-NET is an integral part of the 2015 Joint Activities developed by the Water Challenges for a Changing World Joint Programme Initiative (Water JPI) JPIWaterWaterWorks 2014. Funding from the Spanish Ministry of Science and Innovation (AGL2017-90666‐REDC and RTI2018-096754-J-I00) is also acknowledged. V.G.-D. was supported by a postdoctoral scholarship from the ‘Ramon y Cajal’ programme Spanish Ministry of Economy and Competitiveness (RYC2018-024994-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Gonzalez-Dugo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Dugo, V., Zarco-Tejada, P.J., Intrigliolo, D.S. et al. Normalization of the crop water stress index to assess the within-field spatial variability of water stress sensitivity. Precision Agric 22, 964–983 (2021). https://doi.org/10.1007/s11119-020-09768-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-020-09768-6

Keywords

Navigation