Skip to main content
Log in

Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance

  • Review Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The localization of isoprenoid lipids in chloroplasts, the accumulation of particular isoprenoids under high irradiance conditions, and channelling of photosynthetically fixed carbon into plastidic thylakoid isoprenoids, volatile isoprenoids, and cytosolic sterols are reviewed. During leaf and chloroplast development in spring plastidic isoprenoid biosynthesis provides primarily thylakoid carotenoids, the phytyl side-chain of chlorophylls and the electron carriers phylloquinone K1, α-tocoquinone and α-tocopherol, as well as the nona-prenyl side-chain of plastoquinone-9. Under high irradiance, plants develop sun leaves and high light (HL) leaves with sun-type chloroplasts that possess, besides higher photosynthetic CO2 assimilation rates, different quantitative levels of pigments and prenylquinones as compared to shade leaves and low light (LL) leaves. After completion of chloroplast thylakoid synthesis plastidic isoprenoid biosynthesis continues at high irradiance conditions, constantly accumulating α-tocopherol (α-T) and the reduced form of plastoquinone-9 (PQ-9H2) deposited in the steadily enlarging osmiophilic plastoglobuli, the lipid reservoir of the chloroplast stroma. In sun leaves of beech (Fagus) and in 3-year-old sunlit Ficus leaves the level of α-T and PQ-9 can exceed that of chlorophyll b. Most plants respond to HL conditions (sun leaves, leaves suddenly lit by the sun) with a 1.4–2-fold increase of xanthophyll cycle carotenoids (violaxanthin, zeaxanthin, neoxanthin), an enhanced operation of the xanthophyll cycle and an increase of β-carotene levels. This is documented by significantly lower values for the weight ratio chlorophylls to carotenoids (range: 3.6–4.6) as compared to shade and LL leaves (range: 4.8–7.0). Many plant leaves emit under HL and high temperature conditions at high rates the volatile compounds isoprene (broadleaf trees) or methylbutenol (American ponderosa pines), both of which are formed via the plastidic 1-deoxy-d-xylulose-phosphate/2-C-methylerythritol 5-phosphate (DOXP/MEP) pathway. Other plants by contrast, accumulate particular mono- and diterpenes. Under adequate photosynthetic conditions the chloroplastidic DOXP/MEP isoprenoid pathway essentially contributes, with its C5 isoprenoid precusors, to cytosolic sterol biosynthesis. The possible cross-talk between the two cellular isoprenoid pathways, the acetate/MVA and the DOXP/MEP pathways, that preferentially proceeds in a plastid-to-cytosol direction, is shortly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. At that time I was a post-doc with Melvin Calvin and, after the thylakoid lipid table had been published (Lichtenthaler and Park 1963), Andy Benson became quite interested in the functional organization of membrane lipids and contacted me in Berkeley. During my subsequent visit to his laboratory in La Jolla/San Diego in the summer of 1963, I had on basis of the thylakoid lipid table an extensive discussion with Andy Benson on the arrangement of phospho- and glycolipids in photosynthetic biomembranes. From the dimensions of the double lines seen for thylakoid membranes in electron microscopic observations at high magnification and the length of the fatty acid chains in the glycerolipid molecules, the two of us agreed that a bilayer was spatially possible and that the thylakoid membrane most probably consisted of a bilayer of glycerolipids in which various functional proteins were embedded and attached. We also discussed in a very stimulating approach how chlorophylls with their porphyrin ring and phytyl side-chain were oriented in such a lipid bilayer and how plastidic prenylquinones with their phytyl or nona-prenyl side-chain might be embedded, together with the carotenoids, as C40-isoprenoids to give a possible thylakoid lipid bilayer structure. The thylakoid lipid table and various aspects of our discussion subsequently became essential parts of Andy Benson’s review paper, “Plant Lipid Membranes” (Benson 1964), in which he showed various possibilities for the arrangement of glycerolipids in biomembranes and pointed out the kind of information and research needed to make progress in our understanding of the functional organization of plant and thylakoid membrane lipids. This topic was further advanced by Weier and Benson (1967). In this context, one has to consider that our present knowledge that all cellular membranes are composed of a basic lipid bilayer structure was not known at that time. Likewise, in the early 1960s, it was not known that photosynthetic pigments are bound to particular chlorophyll–carotenoid–protein complexes, such as the light-harvesting Chl a/b complexes, LHCPs (or LHCII), photosystem II (CPa) and photosystem I pigment–protein complexes (CPI and CPIa) (Bennett 1983; Lichtenthaler et al. 1982a; Thornber 1975). Further, that the pigments are not packed together with glycerolipids in the thylakoid bilayer. (H. K. Lichtenthaler, March 2007).

  2. As post-doc in Berkeley at beginning of December 1963, I actually detected the rapid flow of 14C-label from photosynthetically fixed 14CO2, not only into the plastidic isoprenoids β-carotene, plastoquinone-9, phylloquinone K1 and chlorophylls, but also into cytosolic sterols in Chlorella after an exposure time of 2 min. In this experiment Chlorella suspensions were fed 14CO2 in the original ‘Lollipop’ vessel set up by Andy Benson in Melvin Calvin’s photosynthesis laboratory in Berkeley in the early 1950s for studies of the path of carbon in photosynthesis. Due to my return to Germany at the end of December 1963, this work could not be continued. However, feeding 13C-labeled glucose to illuminated Chlorella suspensions in my Karlruhe laboratory 42 years later led to the detection of the chloroplastidic DOXP/MEP pathway for isoprenoid biosynthesis and its responsibility for the biosynthesis of the cytosolic sterols in unicellular green algae (Schwender et al. 1996). (H. K. Lichtenthaler, March 2007).

  3. In addition to isoprenoid compounds, plants emit substantial amounts of phytogenic volatile organic compounds (PVOCS) comprising alkanes, alkenes, alcohols, aldehydes, ethers, esters and carboxylic acids (e.g., Penuelas and Llusia 2004). Plants not only metabolize methanol as shown in a paper co-authored by Andy Benson (Gout et al. 2000), but they also emit substantial amounts of methanol (Nonomura and Benson 1992a, b) via stomates (Nemecek-Marshall et al. 1995) during the early stages of leaf expansion due to pectin demethylation (see review by Fall and Benson, 1996).

Abbreviations

b:

Total chlorophylls

a/b:

Ratio of chlorophyll a to b

Chl:

Chlorophyll

(a + b)/(c):

Weight ratio of chlorophylls to carotenoids

A:

Antheraxanthin

c:

Carotenes

DMAPP:

Dimethylallyldiphosphate

DOXP/MEP pathway:

Plastidic 1-deoxy-d-xylulose-4-phosphate/2-C-methylerythritol 5-phosphate pathway

GAP:

Glyceraldehyde-3-phosphate

IPP:

Isopentenyl diphosphate

MBO:

2-methyl-3-buten-2-ol

MEP:

2-C-methylerythritol 5-phosphate

MVA:

Mevalonic acid

PPFD:

Photosynthetic photon flux density

V:

Violaxanthin

x + c:

Total carotenoids

x:

Xanthophylls

Z:

Zeaxanthin

References

  • Adam KP, Zapp J (1998) Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochemistry 48:653–659

    Google Scholar 

  • Adams WW, Demmig-Adams B (1994) Carotenoid composition and down regulation of photosystem II in three conifer species during the winter. Physiol Plant 92:451–458

    Google Scholar 

  • Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiol 129:269–277

    PubMed  CAS  Google Scholar 

  • Affek HP, Yakir D (2003) Natural abundance carbon isotope composition of isoprene reflects incomplete coupling between isoprene synthesis and photosynthetic carbon flow. Plant Physiol 131:1727–1736

    PubMed  CAS  Google Scholar 

  • Alban C, Joyard J, Douce R (1988) Preparation and characterization of envelope membranes from nongreenplastids. Plant Physiol 88:709–711

    PubMed  CAS  Google Scholar 

  • Anderson JM, Chow WS, Park Y-I (1995) The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–139

    CAS  Google Scholar 

  • Andrews TJ, Kane HJ (1991) Pyruvate is a by-product of catalysis by ribulosebisphosphate caboxylase/oxygenase. J Biol Chem 266:9447–9452

    PubMed  CAS  Google Scholar 

  • Bach TJ, Lichtenthaler HK (1982) Mevinolin, a highly specific inhibitor of microsomal 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase of radish plants. Z Naturforsch 37c:46–50

    CAS  Google Scholar 

  • Bach TJ, Lichtenthaler HK (1983a) Mechanisms of inhibition by mevinolin (MK 803) of microsome-bound radish and of partially purified yeast HMG-CoA reductase, (EC. 1.1.1.34). Z Naturforsch 37c:212–219

    Google Scholar 

  • Bach TJ, Lichtenthaler HK (1983b) Inhibition by mevinolin of plant growth, sterol formation and pigment accumulation. Physiol Plant 59:50–60

    CAS  Google Scholar 

  • Bassham JA, Benson AA, Kay LD, Harris AZ, Wilson AT, Calvin M (1954) The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J Am Chem Soc 76:1760–1770

    CAS  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosyn Res 60:43–73

    CAS  Google Scholar 

  • Bennett J (1983) Regulation of photosynthesis by reversible phosphorylation of the light harvesting chlorophyll a/b proteins. Biochem J 212:1–13

    PubMed  CAS  Google Scholar 

  • Benning C (2007) Questions remaining in sulfolipid biosynthesis: a historical perspective. Photosyn Res doi: 10.1007/s11120-007-9144-6

  • Benson AA (1963) The plant sulfolipid. Adv Lipid Res 64:387–394

    Google Scholar 

  • Benson AA (1964) Plant membrane lipids. Annu Rev Plant Physiol 15:1–16

    CAS  Google Scholar 

  • Benson AA (1971) Lipids of chloroplasts. In: Gibbs M (ed) Structure and function of chloroplasts. Springer, Berlin, pp 130–145

    Google Scholar 

  • Benson AA (2002a) Paving the path. Annu Rev Plant Biol 53:1–25

    PubMed  CAS  Google Scholar 

  • Benson AA (2002b) Following the path of carbon in photosynthesis: a personal story. Photosynth Res 73:29–49

    PubMed  CAS  Google Scholar 

  • Benson AA, Maruo B (1958) Plant phospholipids. I. Identification of phosphatidyl glycerols. Biochim Biophys Acta 27:189–195

    PubMed  CAS  Google Scholar 

  • Benson AA, Strickland EH (1960) Plant phospholipids. III Identification of diphospatidyl glycerol. Biochim Biophys Acta 41:328–333

    PubMed  CAS  Google Scholar 

  • Benson AA, Miyano M (1961) The phosphatidylglycerol and sulfolipid of plants: asymmetry of the glycerol moiety. Biochem J 81:31P

    CAS  Google Scholar 

  • Benson AA, Miyano M (1962) The plant sulfolipid. VII Synthesis of 6.sufo-a.D-quinovopyranosyl-(1-1′)-glycerol and radiochemical synthesis of sulfolipids. J Am Chem Soc 84:59–62

    Google Scholar 

  • Benson AA, Bassham JA, Calvin M, Hall AG, Hirsch HE, Kawaguchi S, Lynch V, Tolbert NE (1952) The path of carbon in photosynthesis. XV. Ribulose and sedoheptulose. J Biol Chem 196:703–716

    PubMed  CAS  Google Scholar 

  • Benson AA, Wiser R, Ferrari RA, Miller JA (1958) Photosynthesis of galactolipids. J Am Chem Soc 80:4740

    CAS  Google Scholar 

  • Benson AA, Daniel H, Wiser R (1959a) A sulfolipid in plants. Proc Natl Acad Sci 45:1582–1587

    PubMed  CAS  Google Scholar 

  • Benson AA, Wintermans JFGM, Wiser R (1959b) Chloroplast lipids as carbohydrates reservoir. Plant Physiol 34:315–317

    PubMed  CAS  Google Scholar 

  • Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415:146–154

    PubMed  CAS  Google Scholar 

  • Boardman N (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    CAS  Google Scholar 

  • Brugnoli E, Scartazza A, De Tullio MC, Monterverdi MC, Lauteri M, Augusti A (1998) Zeaxanthin and non-photochemical quenching in sun and shade leaves of C3 and C4 Plants. Physiol Plant 104:727–734

    CAS  Google Scholar 

  • Calvin M, Bassham JA (1962) The photosynthesis of carbon compounds. WA Benjamin Co., New York

    Google Scholar 

  • Delwiche CF, Sharkey TD (1993) Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves. Plant Cell Environ 16:587–591

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (1996) The role of the xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Google Scholar 

  • Disch A, Schwender J, Müller C, Lichtenthaler HK, Rohmer M (1998) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388

    PubMed  CAS  Google Scholar 

  • Douce R, Holtz B, Benson AA (1973) Isolation and properties of the envelope of spinach chloroplasts. J Biol Chem 248:7215–7222

    PubMed  CAS  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci 102:933–938

    PubMed  CAS  Google Scholar 

  • Falk H (1960) Magnoglobuli in Chloroplasten von Ficus elastica Roxb. Planta 55:525–532

    Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol—the simplest natural product from plants. Trends Plant Sci 1:296–301

    Google Scholar 

  • Ferrari RA, Benson AA (1961) The path of carbon in photosynthesis of the lipids. Arch Biochem Biophys 93:185–192

    PubMed  CAS  Google Scholar 

  • Flügge UI, Gao W (2005) Transport of isoprenoid intermediates across chloroplast envelope membranes. Plant Biol 7:91–97

    PubMed  Google Scholar 

  • Garcia-Plazaola JI, Faria T, Abadia J, Chavess MM, Pereira JS (1997) Seasonal changes in xanthophyll composition and photosynthesis of cork oak (Quercus suber L.) leaves under mediterranean climate. J Exp Bot 48:1667–1674

    CAS  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun vs. shade: a whole plant perspective. Austr J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Golz A, Focke M, Lichtenthaler HK (1994) Inhibitors of de novo fatty acid biosynthesis in higher plants. J Plant Physiol 143:426–433

    CAS  Google Scholar 

  • Gout E, Aubert S, Bligny R, Rébeillé F, Nonomura AR, Benson AA, Douce R (2000) Metabolism of methanol in Plant cells. Carbon-13 nuclear magnetic resonance studies. Plant Physiol 123:287–296

    PubMed  CAS  Google Scholar 

  • Gray DW, Lerdau MT, Goldstein AH (2002) Influence of temperature history, water stress, and needle age on methylbutenol emissions. Ecology 84:765–776

    Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–715

    PubMed  CAS  Google Scholar 

  • Hampel D, Mosandl A, Wüst M (2005) Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry 66:305–311

    PubMed  CAS  Google Scholar 

  • Harley P, Fridd-Stroud V, Greenberg J, Guenther A, Vasconcellos P (1998) Emission of 2-methyl-3-buten-2-ol by pines: a potential large source of reactive carbon to the atmosphere. J Geophys Res D 103:25479–25486

    CAS  Google Scholar 

  • Heber U, Heldt HW (1981) The chloroplast envelope: structure, function and role in leaf metabolism. Annu Rev Plant Physiol 32:139–168

    CAS  Google Scholar 

  • Hemmerlin A, Hoeffler J-F, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    PubMed  CAS  Google Scholar 

  • Hemmerlin A, Tritsch D, Hartmann M, Pacaud K, Hoeffler J-F, van Dorsselaer A, Rohmer M, Bach TJ (2006) A cytosolic Arabidopsis D-xylulose kinase catalyzes the phosphorylation of 1-deoxy-D-xylulose into a precursor of the plastidial isoprenoid pathway. Plant Physiol 142:441–457

    PubMed  CAS  Google Scholar 

  • Jeffrey SW, Douce R, Benson AA (1974) Carotenoid transformations in the chloroplast envelope. Proc Natl Acad Sci 71:807–810

    PubMed  CAS  Google Scholar 

  • Joyard J, Teyssier E, Miège C, Berny-Seigneurin D, Maréchal E, Block MA, Dorne A-J, Rolland N, Ajlani G, Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118:715–723

    PubMed  CAS  Google Scholar 

  • Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188–45194

    PubMed  CAS  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    CAS  Google Scholar 

  • Lerdau M, Guenther A, Monson R (1997) Plant prodution and emission of volatile organic compounds. BioScience 47:373–383

    Google Scholar 

  • Lichtenthaler HK (1968) Plastoglobuli and the fine structure of plastids. Endeavour XXVII:144–149

    Google Scholar 

  • Lichtenthaler HK (1969a) Die Plastoglobuli von Spinat, ihre Größe und Zusammensetzung während der Chloroplastendegeneration. Protoplasma 68:315–326

    CAS  Google Scholar 

  • Lichtenthaler HK (1969b) Die Bildung überschüssiger Plastidenchinone in den Blättern von Ficus elasticus Roxb. Z Naturforsch 24b:1461–1466

    Google Scholar 

  • Lichtenthaler HK (1969c) Localization and functional concentrations of lipoquinones in chloroplasts. In: Metzner H (ed) Photosynthesis research, vol I. Tübingen, pp 304–314

  • Lichtenthaler HK (1969d) Plastoglobuli und Lipochinongehalt der Chloroplasten von Cereus peruvianus (L.) Mill. Planta 87:304–310

    CAS  Google Scholar 

  • Lichtenthaler HK (1971a) Die unterschiedliche Synthese der lipophilen Plastidenchinone in Sonnen- und Schattenblättern von Fagus sylvatica L. Z Naturforsch 26b:832–842

    Google Scholar 

  • Lichtenthaler HK (1971b) Formation and function of plastoglobuli in plastids. Proceed Septième Congrès International de Microscopie électronique Grenoble, 1970, p 206

  • Lichtenthaler HK (1981) Adaptation of leaves and chloroplasts to high quanta fluence rates. In: Akoyunoglou G (ed) Photosynthesis VI. Balaban Internat Science Service, Philadelphia, pp 273–287

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. In: Douce R, Packer L (eds) Methods enzymol, vol 148. Academic Press Inc., New York, pp 350–382

    Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (2000) The non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:787–792

    Google Scholar 

  • Lichtenthaler HK, Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 713–736

  • Lichtenthaler HK, Calvin M (1964) Quinone and pigment composition of chloro-plasts and quantasome aggregates from Spinacia oleracea. Biochim Biophys Acta 79:30–40

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Sprey B (1966) Über die osmiophilen globulären Lipideinschlüsse der Chloroplasten. Z Naturforsch 21b:690–697

    Google Scholar 

  • Lichtenthaler HK, Park RB (1963) Chemical composition of chloroplast lamellae from spinach. Nature 198:1070–1072

    CAS  Google Scholar 

  • Lichtenthaler HK, Schindler C (1992) Studies on the photoprotective function of zeaxanthin at high-light conditions. In: Murata N (ed) Research in photosynthesis, vol IV. Kluwer Academic Publishers, Dordrecht, pp 517–520

    Google Scholar 

  • Lichtenthaler HK, Sprey B (1966) Über die osmiophilen globulären Lipideinschlüsse der Chloroplasten. Z Naturforsch 21b:690–697

    Google Scholar 

  • Lichtenthaler HK, Weinert H (1970) Die Beziehungen zwischen Lipochinonsynthese und Plastoglobulibildung in den Chloroplasten von Ficus elastica Roxb. Z Naturforsch 25b:619–623

    Google Scholar 

  • Lichtenthaler HK, Prenzel U, Douce R, Joyard J (1981a) Localization of prenylquinones in the envelope of spinach chloroplasts. Biochim Biophys Acta 641:99–105

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C, Döll M, Fietz H-J, Bach T, Kozel U, Meier D, Rahmsdorf U (1981b) Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosyn Res 2:115–141

    CAS  Google Scholar 

  • Lichtenthaler HK, Prenzel U, Kuhn G (1982a) Carotenoid composition of chlorophyll-carotenoid-proteins from radish chloroplasts. Z Naturforsch 37c:10–12

    CAS  Google Scholar 

  • Lichtenthaler HK, Kuhn G, Prenzel U, Buschmann C, Meier D (1982b) Adaptation of chloroplast-ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions. Z Naturforsch 37c:464–475

    CAS  Google Scholar 

  • Lichtenthaler HK, Meier D, Buschmann C (1984) Development of chloroplasts at high and low light quanta fluence rates. Israel J Bot 33:185–194

    CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997a) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate independent pathway. FEBS Lett 400:271–274

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Rohmer M, Schwender J (1997b) Two independent biochemical pathways for isopentenyl diphosphate (IPP) and isoprenoid biosynthesis in higher plants. Physiol Plant 101:643–652

    CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    PubMed  CAS  Google Scholar 

  • Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S (2001) Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol 126:993–1000

    PubMed  CAS  Google Scholar 

  • Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M, León P (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J 9:649–658

    PubMed  CAS  Google Scholar 

  • Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, Schnitzler JP (2005) Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves. Plant Physiol 139:474–484

    PubMed  CAS  Google Scholar 

  • Meier D, Lichtenthaler HK (1981) Ultrastructural development of chloroplasts in radish seedlings grown at high and low light conditions and in the presence of the herbicide bentazon. Protoplasma 107:195–207

    CAS  Google Scholar 

  • Nabeta K, Ishikawa T, Okuyama H (1995) Sesqui- and diterpene biosynthesis from 13C labelled acetate and mevalonate in cultures cells of Heterocyphus planus. J Chem Soc Perkin Trans 1:3111–3115

    Google Scholar 

  • Nabeta K, Kawae T, Saitoh T, Kikuchi T (1997) Synthesis of chlorophyll a and ß-carotene from 2H and 13C-labelled mevalonates and 13C-labeled glycin in cultured cells of liwerworts Heterocyphus planus and Lophocolea heterophylla. J Chem Soc Perkin Trans 1:261–267

    Google Scholar 

  • Nagata N, Suzuki M, Yoshida S, Muranaka T (2002) Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the non-mevalonate pathway. Planta 216:345–350

    PubMed  CAS  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    PubMed  CAS  Google Scholar 

  • Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves: enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol 108:1359–1368

    PubMed  CAS  Google Scholar 

  • Nonomura AM, Benson AA (1992a) The path of carbon in photosynthesis: methanol and light. In: Murata N (ed) Research in photosynthesis Vol III. Kluwer Acad Publisher, Dordrecht, pp 911–915

    Google Scholar 

  • Nonomura AM, Benson AA (1992b) The path of carbon in photosynthesis: improved crop yields with methanol. Proc Natl Acad Sci 89:9794–9798

    PubMed  CAS  Google Scholar 

  • O’Brien JS, Benson AA (1964) Isolation and fatty acid composition of the plant sulfolipid and galactolipids. The J Lipid Res 5:432–436

    Google Scholar 

  • Penuelas J, Llusia J (2004) Plant VOC emissions: making use of the unavoidable. Trends Ecol Evol 19:402–404

    PubMed  Google Scholar 

  • Rasmussen RH, Khalil MAK (1998) Isoprene over the Amazon Basin. J Geoph Res 93:1417–1421

    Google Scholar 

  • Rosenstiel TN, Fisher AJ, Fall R, Monson RK (2002) Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species. Plant Physiol 129:1276–1284

    PubMed  CAS  Google Scholar 

  • Rosenstiel TN, Ebbets AL, Khatri WC, Fall R, Monson RK (2004) Induction of poplar leaf nitrate reductase: a test of extrachloroplastidic control of isoprene emission rate. Plant Biol 6:12–21

    PubMed  CAS  Google Scholar 

  • Schade GW, Goldstein AH, Gray DW, Lerdau MT (2000) Canopy and leaf level 2-methyl-3-buten-2-ol fluxes from a ponderosa pine plantation. Atmos Environ 34:3535–3544

    CAS  Google Scholar 

  • Schindler C, Lichtenthaler HK (1996) Photosynthetic CO2 assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field-grown maple trees in the course of a sunny and a cloudy day. J Plant Physiol 148:399–412

    CAS  Google Scholar 

  • Schindler C, Reith P, Lichtenthaler HK (1994) Differential levels of carotenoids and decrease of zeaxanthin cycle performance during leaf development in a green and an aurea variety of tobacco. J Plant Physiol 143:500–507

    CAS  Google Scholar 

  • Schindler S, Bach TJ, Lichtenthaler HK (1985) Differential inhibition by mevinolin of prenyllipid accumulation in radish seedlings. Z Naturforsch 40c:208–214

    CAS  Google Scholar 

  • Schnitzler J-P, Graus M, Kreuzwieser J, Heizmann U, Rennenberg H, Wisthaler A, Hansel A (2004) Contribution of different carbon sources to isoprene biosynthesis in poplar leaves. Plant Physiol 135:152–160

    PubMed  CAS  Google Scholar 

  • Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F, Eisenreich W (2003) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem Rev 2:3–16

    CAS  Google Scholar 

  • Schulze-Siebert D, Schulze G (1987) ß-carotene synthesis in isolated chloroplasts. Plant Physiol 84:1233–1237

    PubMed  CAS  Google Scholar 

  • Schulze-Siebert D, Heinecke D, Scharf H, Schulze G (1984) Pyruvate-derived amino acids in spinach chloroplasts. Plant Physiol 76:465–471

    Article  PubMed  CAS  Google Scholar 

  • Schwarz MK (1994) Terpenbiosynthese in Ginkgo biloba. PhD thesis, Eidgen Techn Hochschule, Zürich, Switzerland

  • Schwender J, Seeman M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophyll and plastoquinone) via a novel pyruvate/glycero-aldehyde-3-phosphate non-mevalonate pathway in the green alga Scenedesmus. Biochem J 316:73–80

    PubMed  CAS  Google Scholar 

  • Schwender J, Zeidler J, Gröner R, Müller C, Focke M, Braun S, Lichtenthaler FW, Lichtenthaler HK (1997) Incorporation of 1-deoxy-D-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett 414:129–134

    PubMed  CAS  Google Scholar 

  • Schwender J, Gemünden HK, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212:416–423

    PubMed  CAS  Google Scholar 

  • Sharkey TD (1996) Isoprene emission by plants and animals. Endeavour 20:74–78

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374:769

    CAS  Google Scholar 

  • Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez DE (2005) Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol 137:700–712

    PubMed  CAS  Google Scholar 

  • Silver GM, Fall R (1995) Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene emission to the atmosphere. J Biol Chem 270:13010–13016

    PubMed  CAS  Google Scholar 

  • Stumpf PK (1984) Fatty acid biosynthesis in higher plants. In: Numa S (ed) Fatty acid metabolism and its regulation. Elsevier Science Publishers BV, Amsterdam, pp 155–179

    Google Scholar 

  • Tevini M, Steinmüller D (1985) Composition and function of plastoglobuli. Planta 163:91–96

    CAS  Google Scholar 

  • Thayer SS, Björkman O (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23:331–343

    CAS  Google Scholar 

  • Thiele A, Schirwitz K, Winter K, Krause GH (1996) Increased xanthophyll cycle activity and reduced D1 protein inactivation in two plant systems acclimated to excess light. Plant Sci 115:237–250

    CAS  Google Scholar 

  • Thornber JP (1975) Chlorophyll-proteins: light-harvesting and reaction center components of plants. Annu Rev Plant Physiol 26:127–158

    CAS  Google Scholar 

  • von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057

    Google Scholar 

  • Wada H, Murata N (2007) The essential role of phosphatidylglycerol in photosynthesis. Photosyn Res doi: 10.1007/s11120-007-9203-z

  • Walker D (2007) From Chlorella to chloroplasts—a personal note. Photosyn Res doi: 10.1007/s11120-007-9130-3

  • Weier TE, Benson AA (1967) The molecular organization of chloroplast membranes. Am J Bot 54:389–402

    CAS  Google Scholar 

  • Wild A, Höpfner M, Rühle W, Richter M (1986) Changes in the stochiometry of photosystem II components as an adaptive response to high-light and low-light conditions during growth. Z Naturforsch C 41:597–603

    CAS  Google Scholar 

  • Wildermuth MC, Fall R (1996) Light-dependent isoprene emission (Characterization of a thylakoid-bound isoprene synthase in Salix discolor chloroplasts). Plant Physiol 112:171–182

    PubMed  CAS  Google Scholar 

  • Wildermuth MC, Fall R (1998) Biochemical characterization of stromal and thylakoid-bound isoforms of isoprene synthase in willow leaves. Plant Physiol 116:1111–1123

    PubMed  CAS  Google Scholar 

  • Wintermans JFGM (1960) Concentration of phospholipids and glycolipids in leaves and chloroplasts. Biochim Biophys Acta 44:49–54

    PubMed  CAS  Google Scholar 

  • Wolfertz M, Sharkey TD, Boland W, Kuhnemann F (2004) Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis. Plant Physiol 135:1939–1945

    PubMed  CAS  Google Scholar 

  • Young AJ (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83:702–708

    CAS  Google Scholar 

  • Zeidler JG, Lichtenthaler HK (1998) Two simple methods for measuring isoprene emission of leaves by UV-spectroscopy and GC–MS. Z Naturforsch 53c:1087–1089

    Google Scholar 

  • Zeidler J, Lichtenthaler HK (2001) Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation. Planta 213:323–326

    PubMed  CAS  Google Scholar 

  • Zeidler JG, Lichtenthaler HK, May HU, Lichtenthaler FW (1997) Is isoprene emitted by plants synthesized via the novel isopentenylpyrophosphate pathway? Z Naturforsch 52c:15–23

    Google Scholar 

  • Zeidler JG, Schwender J, Müller C, Wiesner J, Weidemeyer C, Beck E, Jomaa H, Lichtenthaler HK (1998) Inhibition of the non-mevalonate 1-deoxy-D-xylulose-5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin. Z Naturforsch 53c:980–986

    Google Scholar 

Download references

Acknowledgments

I am grateful to former Ph.D students and group members who carried out parts of the research on plant isoprenoid biosynthesis (T. J. Bach, C. Müller, J. Schwender, J. Zeidler) and chloroplast adaptation to high irradiance conditions (C. Buschmann, M. Knapp, G. Langsdorf, D. Meier, U. Rinderle-Zimmer). I wish to thank Professor Bob Buchanan for helpful comments on this manuscript, Ms Sabine Zeiler for long-term excellent implementation of pigment determinations, and Ms Gabrielle Johnson for English language assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut K. Lichtenthaler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lichtenthaler, H.K. Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92, 163–179 (2007). https://doi.org/10.1007/s11120-007-9204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9204-y

Keywords

Navigation