Skip to main content
Log in

Information Free Quantum Bus for Generating Stabiliser States

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Efficient generation of spatially delocalised entangledstates is at the heart of quantum information science. Generally,flying qubits are proposed for long range entangling interactions,however here we introduce a bus-mediated alternative for this task.Our scheme permits efficient and flexible generation ofdeterministic two-qubit operator measurements and has links to theimportant concepts of mode-entanglement and repeat-until-successprotocols. Importantly, unlike flying qubit protocols, our busparticle never contains information about the individual quantumstates of the particles, hence is information-free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ekert A.K. (1991). Phys. Rev. Lett. 67, 661

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Schaetz T. et al. (2004). Phys. Rev. Lett. 93, 040505

    Article  ADS  Google Scholar 

  3. Huelga S.F., Macchiavello C., Pellizzari T., Ekert A.K. (1997). Phys. Rev. Lett. 79: 3865

    Article  ADS  Google Scholar 

  4. Cirac J.I., Zoller P. (2000). Nature (London) 404, 579

    Article  ADS  Google Scholar 

  5. Kielpinski D., Monroe C., Wineland D.J. (2002). Nature (London) 417, 709

    Article  ADS  Google Scholar 

  6. Knill E., Laflamme R., and Milburn G. (2001). Nature (London) 409, 46

    Article  ADS  Google Scholar 

  7. Loss D. and DiVincenzo D.P. (1998). Phys. Rev. A. 57, 120

    Article  ADS  Google Scholar 

  8. Kane B.E. (1998). Nature (London) 393, 133

    Article  ADS  Google Scholar 

  9. Vrijen R. et al. (2000). Phys. Rev. A. 62, 012306

    Article  ADS  Google Scholar 

  10. Ladd T.D., Goldman J.R., Yamaguchi F., Yamamoto Y., Abe E., and Itoh K.M. (2002). Phys. Rev. Lett. 89, 017901

    Article  ADS  Google Scholar 

  11. Friesen M. et al. (2003). Phys. Rev. B. 67, 121301

    Article  ADS  Google Scholar 

  12. de Sousa R., Delgado J.D., and S. Das Sarma (2004). Phys. Rev. A 70, 052304

    Article  ADS  Google Scholar 

  13. Hill C.D., Hollenberg L.C.L., Fowler A.G., Wellard C.J., Greentree A.D., Goan H.-S. (2005). Phys. Rev. B 72, 045350

    Article  ADS  Google Scholar 

  14. Szkopek T. et al. (2006). IEEE Trans. Nano 5, 42

    Article  Google Scholar 

  15. DiVincenzo D.P. (2000). Fortschr. Phys. 48, 771

    Article  MATH  Google Scholar 

  16. Skinner A.J., Davenport M.E., Kane B.E. (2003). Phys. Rev. Lett. 90, 087901

    Article  ADS  Google Scholar 

  17. Greentree A.D., Cole J.H., Hamilton A.R., Hollenberg L.C.L. (2004). Phys. Rev. B. 70, 235317

    Article  ADS  Google Scholar 

  18. Spiller T.P., Nemoto K., Braunstein S.L., Munro W.J., van Loock P., and Milburn G.J. (2006). New J. Phys. 8, 30

    Article  ADS  Google Scholar 

  19. Hollenberg L.C.L., Greentree A.D., Fowler A.G., and Wellard C.J. (2006). Phys. Rev. B 74, 045311

    Article  ADS  Google Scholar 

  20. Bose S. (2003). Phys. Rev. Lett. 91, 207901

    Article  ADS  Google Scholar 

  21. Oskin M.H., Chong F.T., Chuang I.L. (2002). IEEE Comput. 35, 79

    Google Scholar 

  22. Aliferis P., Leung D.W. (2004). Phys. Rev. A. 70, 062314

    Article  ADS  Google Scholar 

  23. Gottesman D., Chuang I.L. (1999). Nature (London) 402, 390

    Article  ADS  Google Scholar 

  24. Leung D.W. (2004). Int. Quantum J. Inf. 2, 33

    Article  MATH  Google Scholar 

  25. Leung D.W., quant-ph/0111122 (2001).

  26. Raussendorf R. and Briegel H.J. (2001). Phys. Rev. Lett. 86: 5188

    Article  ADS  Google Scholar 

  27. Raussendorf R., Browne D.E., Briegel H.J. (2002). Phys. Rev. A. 68, 022312

    Article  ADS  Google Scholar 

  28. Hein M., Eisert J., and Briegel H.J. (2004). Phys. Rev. A. 69, 062311

    Article  MathSciNet  ADS  Google Scholar 

  29. Nielsen M.A., Chuang I.L., Quantum computation and quantum information. (Cambridge University Press, 2000)

  30. Greentree A.D., Devitt S.J., Hollenberg L.C.L. (2006). Phys. Rev. A 73, 032319

    Article  ADS  Google Scholar 

  31. Unanyan R.G., Shore B.W., and Bergmann K. (1999). Phys. Rev. A 59: 2910

    Article  ADS  Google Scholar 

  32. Lukin M.D., Hemmer P.R. (2000). Phys. Rev. Lett. 84: 2818

    Article  ADS  Google Scholar 

  33. Lim Y.L., Beige A., and Kwek L.C. (2005). Phys. Rev. Lett. 95, 030505

    Article  ADS  Google Scholar 

  34. Barrett S.D., Kok P. (2005). Phys. Rev. A 71: 060310(R)

    ADS  Google Scholar 

  35. Lim Y.L., Barrett S.D., Beige A., Kok P., Kwek L.C. (2006). Phys. Rev. A 73, 012304

    Article  ADS  Google Scholar 

  36. Tan S.M., Walls D.F., Collett M.J. (1991). Phys. Rev. Lett. 66, 252

    Article  ADS  Google Scholar 

  37. Hardy L. (1994). Phys. Rev. Lett. 73: 2279

    Article  ADS  Google Scholar 

  38. Ashhab S., Maruyama K., Nori F. (2007). Phys. Rev. A 75, 022108

    Article  ADS  Google Scholar 

  39. Gottesman D., Ph.D Thesis, Caltech quant-ph/9705052 (1997).

  40. Steane A.M. (1996). Phys. Rev. Lett. 77, 793

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Shor P.W. (1995). Phys. Rev. A. 52, R2493

    Article  ADS  Google Scholar 

  42. Calderbank A.R. and Shor P.W. (1996). Phys. Rev. A. 54: 1098

    Article  ADS  Google Scholar 

  43. Gottesman D. (1998). Phys. Rev. A 57, 127

    Article  ADS  Google Scholar 

  44. Nielsen M.A. (2006). Rep. Math. Phys. 57, 147

    Article  MATH  MathSciNet  Google Scholar 

  45. Bremner M.J. et al. (2002). Phys. Rev. Lett. 89, 247902

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Devitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devitt, S.J., Greentree, A.D. & Hollenberg, L.C.L. Information Free Quantum Bus for Generating Stabiliser States. Quantum Inf Process 6, 229–242 (2007). https://doi.org/10.1007/s11128-007-0055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-007-0055-4

Keywords

PACS

Navigation