Skip to main content
Log in

Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study quantum teleportation between two different types of optical qubits using hybrid entanglement as a quantum channel under decoherence effects. One type of qubit employs the vacuum and single-photon states for the basis, called a single-rail single-photon qubit, and the other utilizes coherent states of opposite phases. We find that teleportation from a single-rail single-photon qubit to a coherent-state qubit is better than the opposite direction in terms of fidelity and success probability. We compare our results with those using a different type of hybrid entanglement between a polarized single-photon qubit and a coherent state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bouwmeester, D., Pan, J., Mattle, K., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  2. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  3. Lee, H.-W., Kim, J.: Quantum teleportation and Bell’s inequality using single-particle entanglement. Phys. Rev. A 63, 012305 (2000)

    Article  ADS  Google Scholar 

  4. Lund, A.P., Ralph, T.C.: Nondeterministic gates for photonic single-rail quantum logic. Phys. Rev. A 66, 032307 (2002)

    Article  ADS  Google Scholar 

  5. Cochrane, P.T., Milburn, G.J., Munro, W.J.: Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping. Phys. Rev. A 59, 2631–2634 (1998)

    Article  ADS  Google Scholar 

  6. Van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 63, 022313 (2001)

    Article  Google Scholar 

  7. Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)

    Article  ADS  Google Scholar 

  8. Jeong, H., Kim, M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002)

    Article  ADS  Google Scholar 

  9. Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003)

    Article  ADS  Google Scholar 

  10. Lund, A.P., Ralph, T.C., Haselgrove, H.L.: Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008)

    Article  ADS  Google Scholar 

  11. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    Article  ADS  Google Scholar 

  12. Ralph, T.C., Pryde, G.J.: Optical quantum computation. Prog. Optics. 54, 209–269 (2009)

  13. Park, K., Jeong, H.: Entangled coherent states versus entangled photon pairs for practical quantum-information processing. Phys. Rev. A 82, 062325 (2010)

    Article  ADS  Google Scholar 

  14. Kim, H., Park, J., Jeong, H.: Transfer of different types of optical qubits over a lossy environment. Phys. Rev. A 89, 042303 (2014)

    Article  ADS  Google Scholar 

  15. Jeong, H., Kim, M.S.: Purification of entangled coherent states. Quantum Inf. Comput. 2, 208–221 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Kwon, H., Jeong, H.: Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A 91, 012340 (2015)

    Article  ADS  Google Scholar 

  17. Lee, S.-W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2002)

    Article  ADS  Google Scholar 

  18. Rigas, J., Gühne, O., Lütkenhaus, N.: Entanglement verification for quantum-key-distribution systems with an underlying bipartite qubit-mode structure. Phys. Rev. A 73, 012341 (2006)

    Article  ADS  Google Scholar 

  19. Kwon, H., Jeong, H.: Violation of the Bell–Clauser–Horne–Shimony–Holt inequality using imperfect photodetectors with optical hybrid states. Phys. Rev. A 88, 052127 (2013)

    Article  ADS  Google Scholar 

  20. van Loock, P.: Optical hybrid approaches to quantum information. Laser Photon. Rev. 5, 167–200 (2011)

    Article  Google Scholar 

  21. Furusawa, A., van Loock, P.: Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing. Wiley, New York (2011)

    Book  Google Scholar 

  22. Park, K., Lee, S.-W., Jeong, H.: Quantum teleportation between particlelike and fieldlike qubits using hybrid entanglement under decoherence effects. Phys. Rev. A 86, 062301 (2012)

    Article  ADS  Google Scholar 

  23. Sheng, Y.-B., Zhou, L., Long, G.-L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)

    Article  ADS  Google Scholar 

  24. Andersen, U.L., Neergaard-Nielsen, J.S., van Loock, P., Furusawa, A.: Hybrid quantum information processing. http://arxiv.org/abs/1409.3719

  25. Takeda, S., Fuwa, M., Van Loock, P., Furusawa, A.: Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114, 100501 (2014)

    Article  Google Scholar 

  26. Gerry, C.C.: Generation of optical macroscopic quantum superposition states via state reduction with a Mach–Zehnder interferometer containing a Kerr medium. Phys. Rev. A 59, 4095–4098 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  27. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  28. Jeong, H.: Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A 72, 034305 (2005)

    Article  ADS  Google Scholar 

  29. Shapiro, J.H.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006)

    Article  ADS  Google Scholar 

  30. Shapiro, J., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9, 16 (2007)

    Article  ADS  Google Scholar 

  31. Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010)

    Article  ADS  Google Scholar 

  32. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, Ph: Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007)

    Article  ADS  Google Scholar 

  33. Jeong, H., Zavatta, A., Kang, M., Lee, S.W., Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nat. Photonics 8, 564–569 (2014)

    Article  ADS  Google Scholar 

  34. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)

    Google Scholar 

  35. Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132–5138 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  36. Calsamiglia, J., Lütkenhaus, N.: Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 6771 (2001)

    Article  Google Scholar 

  37. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

  38. Knill, E.: Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005)

    Article  ADS  Google Scholar 

  39. Jeong, H., Kang, M., Kwon, H.: Characterizations and quantifications of macroscopic quantumness and its implementations using optical fields. Opt. Commun. 337, 12–21 (2015)

    Article  ADS  Google Scholar 

  40. Lütkenhaus, N., Calsamiglia, J., Suominen, K.-A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999)

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) through a Grant funded by the Korean government (MSIP) (Grant No. 2010-0018295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunseok Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H., Bae, S. & Choi, S. Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects. Quantum Inf Process 15, 913–927 (2016). https://doi.org/10.1007/s11128-015-1191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1191-x

Keywords

Navigation