Skip to main content
Log in

A mediated semi-quantum protocol for millionaire problem based on high-dimensional Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A mediated semi-quantum protocol allows the participants, who are mathematically equivalent to the classical communicators, to complete specific tasks with the help of a third party with quantum processing ability, which is conducive to the application of quantum communication network. In this paper, a novel mediated semi-quantum private comparison protocol based on high-dimensional Bell states is proposed. It allows two classical participants, Alice and Bob to compare the size of their private information with the help of a semi-honest quantum third party Charlie. So the protocol can be regarded as a semi-quantum solution of the original millionaire problem. It provides a way to solve the problem of secure multi-party computation in quantum resource constrained environment. In this protocol, Charlie establishes quantum channels by distributing high-dimensional Bell states to Alice and Bob. Through the established channels, Alice and Bob can encode private information and prevent information leakage by preparing new particles or reflecting the received particles. Ultimately, who is richer can be deduced with some simple calculations. In the security analysis of the protocol, we analyze that the proposed protocol can resist outside attack, participant attack and TP attack, so as to prove that the private information of the participants in the proposed protocol will not be leaked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’82), Washington, DC, USA, pp. 160–164 (1982)

  2. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: Proceedings of the Nineteenth Annual ACM Conference on Theory of Computing, New York, pp. 218–229 (1987)

  3. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154–1162 (1997)

    Article  ADS  Google Scholar 

  4. Yang, Y.G., Wen, Q.Y.: Anefficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42, 055305 (2009)

    Article  ADS  MATH  Google Scholar 

  5. Luo, Q.B., Yang, G.W., She, K., et al.: Quantum private comparison protocol with linear optics. Int. J. Theor. Phys. 55(12), 5336–5343 (2016)

    Article  MATH  Google Scholar 

  6. Luo, Q.B., Yang, G.W., She, K., et al.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13(10), 2343–2352 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284(12), 3160–3163 (2011)

    Article  ADS  Google Scholar 

  8. Liu, B., Gao, F., Jia, H.Y., et al.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Sun, Z., Yu, J., Wang, P., et al.: Quantum private comparison with a malicious third party. Quantum Inf. Process. 14(6), 2125–2133 (2015)

    Article  ADS  MATH  Google Scholar 

  10. Xu, L., Zhao, Z.: A robust and efficient quantum private comparison of equality based on the entangled swapping of GHZ-like state and x+ state. Int. J. Theor. Phys. 56(8), 2671–2685 (2017)

    Article  MATH  Google Scholar 

  11. Li, C., Chen, X., Li, H., et al.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf. Process. 18(5), 158–169 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ji, Z.X., Fan, P.R., Zhang, H.G., et al.: Several two-party protocols for quantum private comparison using entanglement and dense coding. Opt. Commun. 459, 124911 (2020)

    Article  Google Scholar 

  13. Lin, S., Sun, Y., Liu, X., Yao, Z.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12(1), 559–568 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zhang, W.W., Li, D., Zhang, K., Zuo, H.: A quantum protocol for millionaire problem with Bell states. Quantum Inf. Process. 12(6), 2241–2249 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zhou, Y.H., Shi, W.M., Yang, Y.G.: A quantum protocol for millionaire problem with continuous variables. Commun. Theor. Phys. 61(4), 452 (2014)

    Article  ADS  Google Scholar 

  16. Liu, W., Wang, Y.B., Sui, A.N., et al.: Quantum protocol for millionaire problem. Int. J. Theor. Phys. 58(7), 2106–2114 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chang, Y., Tsai, C., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Inf. Process. 16(7), 177–196 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ye, C.Q., Ye, T.Y.: Circular multi-party quantum private comparison with n-level single-particle states. Int. J. Theor. Phys. 58(4), 1282–1294 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14(11), 4225–4235 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ye, C.Q., Ye, T.Y.: Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Inf. Process. 17(10), 252–268 (2018)

    Article  ADS  MATH  Google Scholar 

  23. Cao, H., Ma, W., Lyu, L., et al.: Multi-party quantum privacy comparison of size based on d-level GHZ states. Quantum Inf. Process. 18(9), 287–300 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Zou, X., Qiu, D., Li, L., et al.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  27. Zou, X., Qiu, D., Zhang, S., et al.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

  28. Boyer, M., Katz, M., Liss, R., et al.: Experimentally feasible protocol for semiquantum key distribution. Phys. Rev. A 96(6), 062335 (2017)

    Article  ADS  Google Scholar 

  29. Zhou, N.R., Zhu, K.N., Zou, X.F.: Multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann. Phys. 531(8), 1800520 (2019)

    Article  MathSciNet  Google Scholar 

  30. Zhang, W., Qiu, D., Mateus, P.: Single-state semi-quantum key distribution protocol and its security proof. Int J Quantum Inf 18(04), 2050013 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  32. Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A: Math. Theor. 46(4), 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Ye, C.Q., Ye, T.Y.: Circular semi-quantum secret sharing using single particles. Commun. Theor. Phys. 70(6), 661–671 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Tsai, C.W., Yang, C.W., Lee, N.Y.: Semi-quantum secret sharing protocol using W-state. Mod. Phys. Lett. A 34(27), 1950213 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Li, X.Y., Chang, Y., Zhang, S.B.: Multi-party semi-quantum secret sharing scheme based on Bell states. In: International conference on artificial intelligence and security. Springer, Cham, pp. 280–288 (2020)

  36. Zou, X., Qiu, D.: Three-step semiquantum secure direct communication protocol. Sci. China Phys., Mech. Astron. 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  37. Zhang, M.H., Li, H.F., Xia, Z.Q., et al.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)

    Article  ADS  MATH  Google Scholar 

  38. Sun, Y., Yan, L., Chang, Y., et al.: Two semi-quantum secure direct communication protocols based on Bell states. Mod. Phys. Lett. A 34(01), 1950004 (2019)

    Article  ADS  Google Scholar 

  39. Rong, Z., Qiu, D., Zou, X.: Semi-quantum secure direct communication using entanglement. Int. J. Theor. Phys. 59(6), 1807–1819 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, C.W., Tsai, C.W.: Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf. Process. 19(4), 1–13 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  41. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 1–19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, W.J., Chen, Z.Y., Ji, S., et al.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yan, L.L., Zhang, S.B., Chang, Y., et al.: Mutual semi-quantum key agreement protocol using Bell states. Mod. Phys. Lett. A 34(35), 1950294 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  44. Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59(3), 663–676 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, M.M., Han, R.F., Gong, L.M.: Multiparty semiquantum key agreement without entanglement. Commun. Theor. Phys. 72(6), 065107 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  47. Fitzsimons, J.F.: Private quantum computation: an introduction to blind quantum computing and related protocols. NPJ Quantum Inf. 3(1), 1–11 (2017)

    Article  Google Scholar 

  48. Broadbent, A.: Delegating private quantum computations. Can. J. Phys. 93(9), 941–946 (2015)

    Article  ADS  Google Scholar 

  49. Liu, Z.R., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement. Ann. Phys. 530(4), 1700206 (2018)

    Article  MathSciNet  Google Scholar 

  50. Krawec, W.O.: Multi-mediated semi-quantum key distribution. In: 2019 IEEE Globecom Workshops. IEEE, pp. 1–6 (2019)

  51. Lin, P.H., Tsai, C.W., Hwang, T.: Mediated semi-quantum key distribution using single photons. Ann. Phys. 531(8), 1800347 (2019)

    Article  MathSciNet  Google Scholar 

  52. Tsai, C.W., Zhang, Z.L., Jian, B.C., et al.: Lightweight mediated semi-quantum secret sharing protocol. arXiv preprint arXiv:2010.06911 (2020)

  53. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16(05), 1850047 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18(7), 1–14 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  56. Jiang, L.Z.: Semi-quantum private comparison based on Bell states. Quantum Inf. Process. 19(6), 1–21 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  57. Xie, L., Li, Q., Yu, F., et al.: Cryptanalysis and improvement of a semi-quantum private comparison protocol based on Bell states. arXiv preprint arXiv:2012.13851 (2020)

  58. Yan, L., Zhang, S., Chang, Y., et al.: Semi-quantum private comparison protocol with three-particle G-like states. Quantum Inf. Process. 20(1), 1–16 (2021)

    Article  MathSciNet  Google Scholar 

  59. Iqbal, H., Krawec, W.O.: High-dimensional semiquantum cryptography. IEEE Trans. Quantum Eng. 1, 1–17 (2020)

    Article  Google Scholar 

  60. Hajji, H., El Baz, M.: Qutrit-based semi-quantum key distribution protocol. Quantum Inf. Process. 20(1), 1–25 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  61. Iqbal, H., Krawec, W.O.: Semi-quantum cryptography. Quantum Inf. Process. 19(3), 1–52 (2020)

    Article  MathSciNet  Google Scholar 

  62. Liu, X.S., Long, G.L., Tong, D.M., et al.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002)

    Article  ADS  Google Scholar 

  63. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  64. Zhang, H., Zhang, C., Hu, X.M., et al.: Arbitrary two-particle high-dimensional Bell-state measurement by auxiliary entanglement. Phys. Rev. A 99(5), 052301 (2019)

    Article  ADS  Google Scholar 

  65. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information, pp. 84–86. Cambridge University Press, New York (2010)

    Google Scholar 

  66. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Sciences Foundation of Hubei Province (Grant No. 2020CFB326), the Natural Science Foundation of Fujian Province (Grant No. 2020J01812), the National Natural Sciences Foundation of China (Grant No. 61772006), the National Key R &D Program of China (Grant No. 2018YFA0306703), the Natural Science Foundation of Guangxi (Grant No. 2019GXNSFAA185033), and the Special Fund for Bagui Scholars of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-bin Luo.

Ethics declarations

Conflict of interest

All data generated or analyzed during this study are included in this published article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Qb., Li, Xy., Yang, Gw. et al. A mediated semi-quantum protocol for millionaire problem based on high-dimensional Bell states. Quantum Inf Process 21, 257 (2022). https://doi.org/10.1007/s11128-022-03590-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03590-x

Keywords

Navigation