Skip to main content

Advertisement

Log in

Flavoring Extracts of Hemidesmus indicus Roots and Vanilla planifolia Pods Exhibit In vitro Acetylcholinesterase Inhibitory Activities

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Acetylcholinesterase inhibitors (AChEIs) are important for treatment of Alzheimer’s disease and other neurological disorders. Search for potent and safe AChEIs from plant sources still continues. In the present work, we explored fragrant plant extracts that are traditionally used in flavoring foods, namely, Hemidesmus indicus and Vanilla planifolia, as possible sources for AChEI. Root and pod extracts of H. indicus and V. planifolia, respectively, produce fragrant phenolic compounds, 2-hydroxy-4-methoxybenzaldehyde (MBALD) and 4-hydroxy-3-methoxybenzaldehyde (vanillin). These methoxybenzaldehydes were shown to have inhibitory potential against acetylcholinesterase (AChE). Vanillin (IC50 = 0.037 mM) was detected as more efficient inhibitor than MBALD (IC50 = 0.047 mM). This finding was supported by kinetic analysis. Thus, plant-based food flavoring agents showed capacity in curing Alzheimer’s disease and other neurological dysfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MBALD:

2-hydroxy-4-methoxybenzaldehyde

AChE:

Acetylcholinesterase

AChEI:

Acetylcholinesterase inhibitor

References

  1. Saklani A, Kutty SK (2008) Plant-derived compounds in clinical trials. Drug Discov Today 13:161–171

    Article  CAS  Google Scholar 

  2. Greenblatt HM, Dvir H, Silman I, Sussman JL (2003) Acetylcholinesterse. J Mol Neurosci 20:369–383

    Article  CAS  Google Scholar 

  3. Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 4:289–300

    Article  Google Scholar 

  4. Houghton PJ, Ren Y, Howes MJ (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23:181–199

    Article  CAS  Google Scholar 

  5. Schulz V (2003) Ginkgo extract or cholinesterase inhibitors in patients with dementia: what clinical trial and guidelines fail to consider. Phytomedicine 10:74–79

    Article  CAS  Google Scholar 

  6. Jain SK (1994) Medicinal plants. National Book Trust, New Delhi, pp 95–96

  7. Sircar D, Dey G, Mitra A (2007) A validated HPLC method for simultaneous determination of 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-4-methoxybenzoic acid in root organs of Hemidesmus indicus. Chromatographia 65:349–353

    Article  CAS  Google Scholar 

  8. Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63:505–515

    Article  CAS  Google Scholar 

  9. Akhtar MN, Lam KW, Abas F, Maulidiani AS, Shah SAA, Rahman A, Choudhary MI, Lajis NH (2011) New class of acetylcholinesterase inhibitors from the stem bark of Knema laurina and their structural insights. Bioorg Med Chem Lett 21:4097–4103

    Article  CAS  Google Scholar 

  10. Mata AT, Proenca C, Ferreira AR, Serralheiro MLM, Nogueira JMF, Araujo MEM (2007) Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chem 103:778–786

    Article  CAS  Google Scholar 

  11. Ding HY, Chou TH, Lin RJ, Chan LP, Wang GH, Liang CH (2011) Antioxidant and antimelanogenic behaviors of Paeonia suffruticosa. Plant Foods Hum Nutr 66:275–284

    Article  CAS  Google Scholar 

  12. Chakraborty D, Sircar D, Mitra A (2008) Phenylalanine ammonia-lyase-mediated biosynthesis of 2-hydroxy-4-methoxybenzaldehyde in roots of Hemidesmus indicus. J Plant Physiol 165:1033–1040

    Article  CAS  Google Scholar 

  13. Gu X, Zhang Z, Wan X, Ning J, Yao C, Shao W (2009) Simultaneous distillation extraction of some volatile flavor components from Pu-erh tea samples—comparison with steam distillation- liquid/liquid extraction and soxhlet extraction. Int J Anal Chem 2009:1–6

    Google Scholar 

  14. He X (2003) A continuous spectrophotometric assay for the determination of diamondback moth esterase activity. Arch Insect Biochem Physiol 54:68–76

    Article  CAS  Google Scholar 

  15. Kundu A, Jawali N, Mitra A (2012) Shikimate pathway modulates the elicitor-stimulated accumulation of fragrant 2-hydroxy-4-methoxybenzaldehyde in Hemidesmus indicus roots. Plant Physiol Biochem 56:104–108

    Article  CAS  Google Scholar 

  16. Pohanka M, Musilek K, Kuca K (2009) Progress of biosensors based on cholinesterase inhibition. Curr Med Chem 16:1790–1798

    Article  CAS  Google Scholar 

  17. Dauterman WC (1982–83) The role of hydrolases in insecticide metabolism and the toxicological significance of the metabolites. J Toxicol Clin Toxic 196/197:623–635

    Google Scholar 

  18. Gomori G (1953) Human esterase. J Lab Clin Med 42:445–453

    CAS  Google Scholar 

  19. Szajdek A, Borowska EJ (2008) Bioactive compounds and health promoting properties of berry fruits: a review. Plant Foods Hum Nutr 63:147–156

    Article  CAS  Google Scholar 

  20. Grutzendler J, Morris JC (2001) Cholinesterase inhibitors for Alzheimer’s disease. Drugs 61:41–52

    Article  CAS  Google Scholar 

  21. Menichini F, Tundis R, Loizzo MR, Bonesi M, Marrelli M, Statti GA, Menichini F, Conforti F (2009) Acetylcholinesterase and butyrylcholinesterase inhibition of ethanolic extract and monoterpenes from Pimpinella anisoides V Brig. (Apiaceae). Fitoterapia 80:297–300

    Article  CAS  Google Scholar 

  22. Savelev S, Okello E, Perry NSL, Wilkins RM, Perry EK (2003) Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol Biochem Behav 75:661–668

    Article  CAS  Google Scholar 

  23. Illum L (2000) Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 11:1–18

    Article  CAS  Google Scholar 

  24. Bachman DL, Wolf PA, Linn RT (1992) Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham study. Neurology 42:115–119

    Article  CAS  Google Scholar 

  25. Schneider LS (2001) Treatment of Alzheimer’s disease with cholinesterase inhibitors. Clin Geriatr Med 17:337–339

    Article  CAS  Google Scholar 

  26. Liu JS, Zhu YL, Yu CM, Zhou YZ, Han YY, Wu FW, Qi BF (1986) The structures of huperzine A and B1, two new alkaloids exhibiting marked anticholinesterase activity. Can J Chem 64:837–839

    Article  CAS  Google Scholar 

  27. Fimognari C, Lenzi M, Ferruzzi L, Turrini E, Scartezzini P, Poli F, Gotti R, Guerrini A, Carulli G, Ottaviano V, Cantelli-Forti G, Hrelia P (2011) Mitochondrial pathway mediates the antileukemic effects of Hemidesmus indicus, a promising botanical drug. PLoS One 6:e21544

    Article  CAS  Google Scholar 

  28. Ishidate M, Sofuni T Jr, Yoshikawa K, Hayashi M, Nohmi T, Sawada M, Matsuoka A (1986) Primary mutagenicity screening of food additives currently used in Japan. Food Chem Toxicol 22:623–636

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by a research grant (no. 2008/37/7/BRNS to A. Mitra) from the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy, Government of India.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adinpunya Mitra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, A., Mitra, A. Flavoring Extracts of Hemidesmus indicus Roots and Vanilla planifolia Pods Exhibit In vitro Acetylcholinesterase Inhibitory Activities. Plant Foods Hum Nutr 68, 247–253 (2013). https://doi.org/10.1007/s11130-013-0363-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-013-0363-z

Keywords

Navigation