Skip to main content
Log in

Features of the ELF/VLF Wave Generation and Propagation Processes during Ionospheric Modulated High-Frequency Heating

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider the results of observations of the ELF/VLF horizontal magnetic field of the ionospheric source using a high-latitude network of PGI stations in the heating experiment of 2016 at the EISCAT/Heating facility. We have discovered that at frequencies close to the frequency of the first transverse resonance of the Earth–ionosphere waveguide (∼1.8 kHz), the amplitude of the horizontal magnetic field of the ionospheric source at the Barentsburg station (located 961 km from the heating facility) often exceeded the amplitudes at the mainland stations located closer to the heater (the nearest station Lotta is 395 km away). With all other conditions being equal, at frequencies considerably different from the frequency of the first transverse resonance, this effect was not observed. We identified and analyzed two possible physical mechanisms that can be responsible for the observed effect. The first is related to a fairly low decay of waves with frequencies close to the frequency of the first transverse resonance of the Earth–ionosphere waveguide when propagating above a highly conductive sea surface with a high reflection coefficient. The second is due to the non-uniformity of the radiation pattern of the ionospheric source. Numerical modeling of the generation and propagation of ELF/VLF waves in the Earth–ionosphere waveguide was carried out and the contribution of the proposed mechanisms was estimated. It is shown that the radiation pattern of the source does not have a notable effect and the experimental data are explained only by taking into account the high conductivity of the lower boundary of the waveguide along the EISCAT—Barentsburg path and low conductivity along the EISCAT—Lotta path. The state of the ionosphere is assessed and a family of electron density profiles for which a similar effect can be observed is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Friedrich, C.Pock, and K.Torkar, J. Geophys. Res.: Space Phys., 123, No. 8, 6737–6751 (2018). https://doi.org/10.1029/2018JA025437

    Article  ADS  Google Scholar 

  2. A. V. Larchenko, O. M. Lebed’, N. F.Blagoveshchenskaya, et al., Radiophys. Quantum Electron., 62, No. 6, 385–394 (2019). 10.1007/s11141-019-09985-8

  3. A. S. Maxworth, M.Gołkowski, and M. B. Cohen, Radio Sci ., 50, No. 10, 1008–1026 (2015). https://doi.org/10.1002/2015RS005683

  4. M. B. Cohen, U. S. Inan, and E. W.Paschal, IEEE Trans. Geosci. Rem. Sens., 48, No. 1, 3–17 (2010). https://doi.org/10.1109/TGRS.2009.2028334

    Article  ADS  Google Scholar 

  5. D. S.Kotik, S.V.Polyakov, and V.A.Yashnov, Radiophys. Quantum Electron., 21, 659–663 (1978). https://doi.org/10.1007/BF01033044

    Article  ADS  Google Scholar 

  6. B. S.Ryabov, Adv. Space Res., 12, No. 6, 6266–6258 (1992). https://doi.org/10.1016/0273-1177(92)90067-8

    Article  Google Scholar 

  7. V. S. Smirnov and A.A. Ostapenko, Geomagn. Aéron., 25, No. 2, 253–257 (1986).

    ADS  Google Scholar 

  8. V. S. Smirnov and A.A. Ostapenko, Wave Processes in the Polar Ionosphere [in Russian], Kola Branch of the Academy of Sciences USSR, Apatity (1988).

    Google Scholar 

  9. A. A. Ostapenko, E. E. Titova, A.P.Nickolaenko, et al., Ann. Geophys., 28, No. 1, 193–202 (2010). https://doi.org/10.5194/angeo-28-193-2010

  10. S. V. Pil’gaev, A. V. Larchenko, Y. V. Fedorenko, et al., Instrum. Exp. Techn., 64, No. 5, 744–753 (2021). https://doi.org/10.1134/S0020441221040229

  11. K.Tsuruda and K.Hayashi, J. Atmos. Terr. Phys., 37, No. 9, 1193–1202 (1975). https://doi.org/10.1016/0021-9169(75)90190-7

    Article  ADS  Google Scholar 

  12. S. M.Rytov, Introduction to Statistical Radiophysics. Part 1. Random Processes [in Russian], Nauka, Moscow (1976).

  13. O. M. Lebed’, Y.V. Fedorenko, N. F.Blagoveshchenskaya, et al., Geomagn. Aeron., 57, No. 6, 698–705 (2017). 10.1134/S0016793217060068

  14. N. G. Lehtinen and U. S. Inan, J. Geophys. Res.: Space Phys., 113, No. 6, 06301 (2008). https://doi.org/10.1029/2007JA012911

    Article  ADS  Google Scholar 

  15. M. B. Cohen, M. Golkowski, and U. S. Inan, Geophys. Res. Lett., 35, No. L02, 02806 (2008). https://doi.org/10.1029/2007GL032424

    Article  ADS  Google Scholar 

  16. A. V. Gurevich and A.B. Shvartsburg, Nonlinear Theory of Radio Wave Propagation in the Ionosphere [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  17. N. M. Maslin and K.G.Budden, Proc. Royal Soc. London. A. Math. Phys. Sci ., 341, No. 1626, 361–381 (1974). https://doi.org/10.1098/rspa.1974.0192

  18. P. Stubbe, H.Kopka, and R. L.Dowden, J. Geophys. Res.: Space Phys., 86, No. A11, 9073–9078 (1981). https://doi.org/10.1029/JA086iA11p09073

    Article  ADS  Google Scholar 

  19. M. T.Rietveld, H.Kopka, and P. Stubbe, J. Geophys. Res.: Space Phys., 48, No. 4, 311–326 (1986). https://doi.org/10.1016/0021-9169(86)90001-2

    Article  Google Scholar 

  20. M. T.Rietveld, H.-P. Mauelshagen, P. Stubbe, et al., J. Geophys. Res.: Space Phys., 92, No. A8, 8707- 8722 (1987). https://doi.org/10.1029/JA092iA08p08707

    Article  ADS  Google Scholar 

  21. M. T.Rietveld, P. Stubbe, and H.Kopka, Radio Sci ., 24, No. 3, 270–278 (1989). https://doi.org/10.1029/RS024i003p00270

  22. R.Moore, “ELF/VLF wave generation by modulated HF heating of the auroral electrojet: The Department of electrical engineering and the committee on graduate studies of Stanford University,” PhD thesis, California (2007).

  23. M. B. Cohen, U. S. Inan, M.Gołkowski, et al., J. Geophys. Res.: Space Phys., 115, No. A7, 07322 (2010). https://doi.org/10.1029/2009JA015170

  24. R. Barr and P. Stubbe, Radio Sci ., 19, No. 4, 1111–1122 (1984). https://doi.org/10.1029/RS019i004p01111

  25. N. G. Lehtinen and U. S. Inan, Geophys. Res. Lett., 36, No 3., 03104 (2009). https://doi.org/10.1029/2008GL036535

    Article  ADS  Google Scholar 

  26. M. Beharrell and F.Honary, J. Geophys. Res., 113, No. A5, A05303 (2008). https://doi.org/10.1029/2007JA012650

    Article  ADS  Google Scholar 

  27. R. W. Schunk and A. F.Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge University Press, Cambridge (2009).

    Book  Google Scholar 

  28. D. T. Farley, J. Geophys. Res., 68, No. 2, 401–413 (1963). https://doi.org/10.1029/JZ068i002p00401

    Article  ADS  Google Scholar 

  29. P. Banks, Planet. Space Sci., 14, No. 11, 1085–1103 (1966). https://doi.org/10.1016/0032-0633(66)90024-9

    Article  ADS  Google Scholar 

  30. M. H. Mentzoni and R.V.Row, Phys. Rev., 130, No. 6, 2312–2316 (1963). https://doi.org/10.1103/PhysRev.130.2312

    Article  ADS  Google Scholar 

  31. A.Dalgarno, M. B.McElroy, M.H.Rees, et al., Planet. Space Sci., 16, No. 11, 1371–1380 (1968). 10.1016/0032-0633(68)90141-4

  32. P. Stubbe and W. S.Varnum, Planet. Space Sci., 20, No. 8, 1121–1126 (1972). https://doi.org/10.1016/0032-0633(72)90001-3

    Article  ADS  Google Scholar 

  33. M. T.Rietveld, H.Kohl, H.Kopka, et al., J. Atmosph. Terr. Phys., 55, No. 4/5, 577–599 (1993). https://doi.org/10.1016/0021-9169(93)90007-L

  34. K. G. Budden, The Wave-Guide Mode Theory of Wave Propagation, Prentice-Hall Inc., Englewood Cliffs (1961).

    Google Scholar 

  35. https://www.openmp.org

  36. T.Korja, M. Engels, A.A. Zhamaletdinov, et al., Earth, Plan. Space., 54, No. 5, 535–558 (2002). https://doi.org/10.1186/BF03353044

  37. N.R. Thomson, M. A. Clilverd, and C. J.Rodger, J. Geophys. Res.: Space Phys., 119, No. 8, 6865–6875 (2014). https://doi.org/10.1002/2014JA020299

    Article  ADS  Google Scholar 

  38. Yu.V. Fedorenko, E.D.Tereshchenko, S. Pilgaev, et al., Radio Sci ., 49, No. 12, 1254–1264 (2014). https://doi.org/10.1002/2013RS005336

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Larchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 11, pp. 845–866, November 2021. Russian DOI: https://doi.org/10.52452/00213462_2021_64_11_845

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larchenko, A.V., Lebed’, O.M., Blagoveshchenskaya, N.F. et al. Features of the ELF/VLF Wave Generation and Propagation Processes during Ionospheric Modulated High-Frequency Heating. Radiophys Quantum El 64, 761–779 (2022). https://doi.org/10.1007/s11141-022-10177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10177-0

Navigation