Skip to main content
Log in

V–Mg–Al catalyst from hydrotalcite for the oxidative dehydrogenation of propane

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Mixed oxides obtained by the calcination of hydrotalcite precursors intercalated with 30, 70 and 100 % of decavanadate (theoretical percentages) were used as catalysts for the oxidative dehydrogenation of propane. Propene selectivity values up to 80 % were reached under conditions of deficiency and excess of oxygen at 400 °C with the catalyst derived from the 70 % vanadium-intercalated precursor. The composition of precursors and catalysts was determined by thermogravimetry and X-ray fluorescence analyses; textural properties of the catalysts were evaluated by N2 adsorption. Characterization by X-ray diffraction and Raman spectroscopy confirmed the intercalation of polyoxometalate species into the interlayer space of the hydrotalcite phase. After calcination, the catalyst with the highest vanadium content exhibited mainly the magnesium pyrovanadate phase. EXAFS analyses at the vanadium K-edge confirmed the presence of decavanadate ion into the hydrotalcite precursor and formation of four-coordinated vanadate species in the calcined catalysts. Catalytic performances of the materials were interpreted on the basis of characterization results suggesting that the active and selective phase was magnesium pyrovanadate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cavani F, Trifirò F (1999) Catal Today 51:561–580

    Article  CAS  Google Scholar 

  2. Chen K, Bell AT, Iglesia E (2000) J Phys Chem B 104:1292–1299

    Article  CAS  Google Scholar 

  3. Cavani F, Trifirò F, Vaccari A (1991) Catal Today 11:173–301

    Article  CAS  Google Scholar 

  4. Holgado MJ, Rives V, San Román MS (2001) Appl Catal A 214:219–228

    Article  CAS  Google Scholar 

  5. Holgado MJ, Labajos FM, Montero MJ, Rives V (2003) Res Bull 38:1879–1891

    Article  CAS  Google Scholar 

  6. Gardner EA, Yun AK, Kwon T, Pinnavaia TJ (1998) Appl Clay Sci 13:479–494

    Article  CAS  Google Scholar 

  7. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer-Verlag, New York

    Book  Google Scholar 

  8. Kim H, Youn MH, Jung JC, Song K (2006) J Mol Catal A 252:252–255

    Article  CAS  Google Scholar 

  9. Dimitratos N, Védrine JC (2003) Catal Today 81:561–571

    Article  CAS  Google Scholar 

  10. Bahranowski K, Bueno G, Cortés G, Kooli F, Serwicka EM, Valenzuela RX, Wcislo K (1999) Appl Catal A 185:65–73

    Article  CAS  Google Scholar 

  11. Węgrzyn A, Rafalska-Łasocha A, Dudek B, Dziembaj R (2006) Catal Today 116:74–81

    Article  Google Scholar 

  12. Dula R, Wcislo K, Stoch J, Grzybowska B, Serwicka EM, Kooli F, Bahranowski K, Gawel A (2002) Appl Catal A 230:281–291

    Article  CAS  Google Scholar 

  13. Larson JW (1995) J Chem Eng Data 40:1276–1280

    Article  CAS  Google Scholar 

  14. Newville M (2001) J Synch Rad 8:322–324

    Article  CAS  Google Scholar 

  15. Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621–654

    Article  CAS  Google Scholar 

  16. Evans D, Slade R (2006) Struct Bond 119:1–87

    CAS  Google Scholar 

  17. De La Calle C, Pons CH, Roux J, Rives V (2003) Clays Clay Miner 51:121–132

    Article  Google Scholar 

  18. Iida A, Ozeki T (2004) Acta Cryst C 60(4):i43–i46

    Article  Google Scholar 

  19. Kraus W, Nolze G (1999) Powdercell for Windows, version 2.3. Federal Institute for Materials Research and Testing, Berlin

    Google Scholar 

  20. Harris D (2007) Quantitative chemical analysis, 7th edn. W. H. Freeman & Co, New York

    Google Scholar 

  21. Palmer SJ, Soisonard A, Frost RL (2009) J Colloid Interface Sci 329:404–409

    Article  CAS  Google Scholar 

  22. Frost RL, Palmer SJ (2011) Spectrochim Acta Part A 78:248–252

    Article  Google Scholar 

  23. Piro OE, Varetti EL, Brandán SA, Ben Altabef A (2003) J Chem Crystallogr 33:57–63

    Article  CAS  Google Scholar 

  24. Voron’ko YK, Sobol’ AA, Shukshin VE (2005) Inorg Mater 41:1097–1106

    Article  Google Scholar 

  25. Kung H, Chaar M, US Patent 4 777 319, 1988

  26. Wachs EI, Chen C, Jehng J, Briand LE, Tanaka T (2003) Catal Today 78:13–24

    Article  CAS  Google Scholar 

  27. Chary KVR, Ramesh K, Vidyasagar G, Venkat Rao V (2003) J Mol Catal A 198:195–204

    Article  CAS  Google Scholar 

  28. Valverde JA, Echavarría A, Ribeiro MF, Palacio LA, Eon JG (2012) Catal Today 192:36–43

    Article  CAS  Google Scholar 

  29. Chen K, Khodakov A, Yang J, Bell A, Iglesia E (1999) J Catal 186:325–333

    Article  CAS  Google Scholar 

  30. Lemonidou AA, Machli M (2007) Catal Today 127:132–138

    Article  CAS  Google Scholar 

  31. Karakoulia SA, Triantafyllidis KS, Tsilomelekis G, Boghosian S, Lemonidou AA (2009) Catal Today 141:245–253

    Article  CAS  Google Scholar 

  32. Soenen V, Herrmann JM, Volta JC (1996) J Catal 159:410–417

    Article  CAS  Google Scholar 

  33. Sam DSH, Soenen V, Volta JC (1990) J Catal 123:417–435

    Article  CAS  Google Scholar 

  34. Owen OS, Kung MC, Kung HH (1992) Catal Lett 12:45–50

    Article  CAS  Google Scholar 

  35. Gao X, Ruiz P, Xin Q, Guo X, Delmon B (1994) J Catal 148:56–67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried-out with a financial support of SENA and COLCIENCIAS. We acknowledge LNLS (Laboratório Nacional Luz Síncrotron – Campinas, Brazil) for XAS (Research project no. 1687) and XRD (Research project no. 6405) measurements, NUCAT and IQ (Universidade Federal do Rio de Janeiro, Brazil) for XRF and XRD analysis. J.-G. E. thanks CNPq (Conselho Nacional de Pesquisa e Desenvolvimento) of Brazil for support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz Amparo Palacio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 794 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valverde, J.A., Echavarría, A., Eon, JG. et al. V–Mg–Al catalyst from hydrotalcite for the oxidative dehydrogenation of propane. Reac Kinet Mech Cat 111, 679–696 (2014). https://doi.org/10.1007/s11144-014-0674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0674-6

Keywords

Navigation