Skip to main content
Log in

Otolith mass marking techniques for aquaculture and restocking: benefits and limitations

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The use of farmed and restocked fish to supplement the worldwide human consumption of fish, recreational fishing stocks, and conservation efforts, is growing at a rapid rate. Yet, monitoring the benefits of using hatchery-raised fish for supplementation is lacking, often due to hatcheries not marking or tagging all fish prior to release, despite a range of easy to apply, cost effective and accurate mass-marking methods being available to mark farmed and restocked fish en masse. Here we review otolith marking techniques that have the capability of mass marking millions of hatchery-reared fish that are, or could be, used for monitoring and compliance purposes. The otolith mass marking methods consist of otolith thermal marking and a range of otolith chemical marking methods (tetracyclines, alizarin compounds, calcein, strontium chloride, stable isotopes of Ba and Sr, and rare earth elements). We assessed and compared marking technique in terms of (1) ease of application, (2) cost of application, (3) mark retention and detectability, and (4) fish welfare. In addition, we determine the suitability of different otolith marking techniques for mass marking entire hatchery populations whether it be for restocking purposes, or for identifying and tracing escapees from aquaculture facilities. We conclude that although some techniques have restricted use due to regulations, the majority of otolith mass marking techniques are simple, easy to apply, cost effective and highly suitable for long term monitoring of hatchery produced fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744

    Article  PubMed  CAS  Google Scholar 

  • Araki H, Schmid C (2010) Is hatchery stocking a help or harm?: evidence, limitations and future directions in ecological and genetic surveys. Aquaculture 308:S2–S11

    Article  Google Scholar 

  • Baer J, Rösch R (2008) Mass-marking of brown trout (Salmo trutta L.) larvae by alizarin: method and evaluation of stocking. J Appl Ichthyol 24:44–49

    Article  Google Scholar 

  • Bashey F (2004) A comparison of the suitability of alizarin red S and calcein for inducing a nonlethally detectable mark in juvenile guppies. Trans Am Fish Soc 133:1516–1523

    Article  Google Scholar 

  • Beacham TD, Wallace C, MacConnachie C, Jonsen K, McIntosh B, Candy JR, Devlin RH, Withler RE (2017) Population and individual identification of coho salmon in British Columbia through parentage-based tagging and genetic stock identification: an alternative to coded-wire tags. Can J Fish Aquat Sci 74:1391–1410

    Article  CAS  Google Scholar 

  • Beckman DW, Schulz RG (1996) A simple method for marking fish otoliths with alizarin compounds. Trans Am Fish Soc 125:146–149

    Article  CAS  Google Scholar 

  • Behrens Yamada S, Mulligan TJ (1987) Marking nonfeeding salmonid fry with dissolved strontium. Can J Fish Aquat Sci 44:1502–1506

    Article  Google Scholar 

  • Behrens Yamada S, Mulligan TJ, Fairchild SJ (1979) Strontium marking of hatchery-reared coho salmon (Oncorhynchus kisutch, Walbaum). J Fish Biol 14:267–275

    Article  Google Scholar 

  • Brooks RC, Heidinger RC, Kohler CC (1994) Mass-marking otoliths of larval and juvenile walleyes by immersion in oxytetracycline, calcein, or calcein blue. N Am J Fish Manag 14:143–150

    Article  Google Scholar 

  • Bumguardner BW, King TL (1996) Toxicity of oxytetracycline and calcein to juvenile striped bass. Trans Am Fish Soc 125:143–145

    Article  CAS  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8(7):1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Cameron LM, Baumgartner LJ, Bucher DJ, Robinson W (2012) Optimising chemical marking techniques for Australian bass, Macquaria novemaculeata, fry and fingerlings prior to restocking. Aust J Zool 59:242–248

    Article  Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297

    Article  CAS  Google Scholar 

  • Campbell NR, Harmon S, Narum SR (2015) Genotyping-in-Thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Res 15:855–867

    Article  CAS  Google Scholar 

  • Caraguel JM, Charrier F, Mazel V, Feunteun E (2015) Mass marking of stocked European glass eels (Anguilla anguilla) with alizarin red S. Ecol Freshw Fish 24:435–442

    Article  Google Scholar 

  • Courtney DL, Severin KP (2007) Validation of otolith increment daily periodicity in captive juvenile sablefish (Anoplopoma fimbria) experimentally immersed in strontium chloride (SrCl2). Fish Res 83:246–252

    Article  Google Scholar 

  • Courtney DL, Mortensen DG, Orsi JA, Munk KM (2000) Origin of juvenile Pacific salmon recovered from coastal southeastern Alaska identified by otolith thermal marks and coded wire tags. Fish Res 46:267–278

    Article  Google Scholar 

  • Cowx IG (1994) Stocking strategies. Fish Manag Ecol. 1:15–30

    Article  Google Scholar 

  • Crook DA, O’Mahony D, Gillanders BM, Munro AR, Sanger AC (2007) Production of external fluorescent marks on golden perch fingerlings through osmotic induction marking with alizarin red S. N Am J Fish Manag 27:670–675

    Article  Google Scholar 

  • Crook DA, O’Mahony DJ, Sanger AC, Munro AR, Gillanders BM, Thurstan S (2009) Development and evaluation of methods for osmotic induction marking of golden perch Macquaria ambigua with calcein and alizarin red S. N Am J Fish Manag 29:279–287

    Article  Google Scholar 

  • Crook DA, Gillanders BM, Sanger AC, Munro AR, O’Mahony DJ, Woodcock SH, Stephen T, Baumgartner LJ (2010) Methods for discriminating hatchery fish and outcomes of stocking in the Murray–Darling Basin. Murray–Darling Basin Commission, Native Fish Strategy Project MD741, Canberra, ACT

  • Crook DA, O’Mahony DJ, Gillanders BM, Munro AR, Sanger AC (2012) Quantitative measurement of calcein fluorescence for non-lethal, field based discrimination of hatchery and wild fish. Am Fish Soc Symp 76:389–396

    Google Scholar 

  • Cuif M, Keller F, Chateau O, Kaplan DM, Labonne M, Lett C, Vigliola L (2014) Evaluation of transgenerational isotope labelling of embryonic otoliths in a coral reef damselfish with single and repeated injections of enriched 137Barium. J Exp Mar Biol Ecol 459:151–159

    Article  CAS  Google Scholar 

  • de Braux E, Warren-Myers F, Dempster T, Fjelldal PG, Hansen T, Swearer SE (2014) Osmotic induction improves batch marking of larval fish otoliths with enriched stable isotopes. ICES J Mar Sci 71:2530–2538

    Article  Google Scholar 

  • Department of Environment and Primary Industries (DEPI) (2005) Protocols for the translocation of fish in Victorian inland public waters. Fisheries Victoria Management Report Series No. 24

  • Duarte CM, Marbá N, Holmer M (2007) Rapid domestication of marine species. Science 316:382–383

    Article  PubMed  CAS  Google Scholar 

  • Duffy WJ, McBride RS, Hendricks ML, Oliveira K (2012) Otolith age validation and growth estimation from oxytetracycline-marked and recaptured American Shad. Trans Am Fish Soc 141:1664–1671

    Article  Google Scholar 

  • Elle FS, Koenig MK, Meyer KA (2010) Evaluation of calcein as a mass mark for rainbow trout raised in outdoor hatchery raceways. N Am J Fish Manag 30:1408–1412

    Article  Google Scholar 

  • Ennevor BC, Beames RM (1993) Use of lanthanide elements to mass mark juvenile salmonids. Can J Fish Aquat Sci 50:1039–1044

    Article  Google Scholar 

  • FAO (2016) The state of world fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome. 200 pp

  • Fleming IA, Hindar K, Mjølnerød IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farm salmon invading a native population. P Roy Soc Lond B Biol 267:1517–1523

    Article  CAS  Google Scholar 

  • Giles MA, Attas EM (1993) Rare earth elements as internal batch marks for rainbow trout: retention, distribution, and effects on growth of injected dysprosium, europium, and samarium. Trans Am Fish Soc 122:289–297

    Article  CAS  Google Scholar 

  • Gillanders BM (2009) Tools for studying biological marine ecosystem interactions—natural and artificial tags. In: Nagelkerken I (ed) Ecological connectivity among tropical coastal ecosystems. Springer, Dordrecht, pp 457–492

    Chapter  Google Scholar 

  • Gillanders BM, Elsdon TS, Munro AR (2006) Impacts of native fish stocking on fish within the Murray–Darling Basin. University of Adelaide, Murray–Darling Basin Commission Contract Number MD239, Murray–Darling Basin Commission Contract Number MD239, Adelaide

  • Glover KA (2010) Forensic identification of fish farm escapees: the Norwegian experience. Aquacult Environ Interact 1:1–10

    Article  Google Scholar 

  • Hagen P, Munk K, Van Alen B, White B (1995) Thermal mark technology for inseason fisheries management: a case study. Alask Fish Res Bull 2:143–155

    Google Scholar 

  • Hammer SA, Blankenship HL (2001) Cost comparisons of marks, tags, and mark with-tag combinations used in salmonid research. N Am J Aquacult 63:171–178

    Article  Google Scholar 

  • Hendricks ML, Bender TR, Mudrak VA (1991) Multiple marking of American shad otoliths with tetracycline antibiotics. N Am J Fish 11:212–219

    Article  Google Scholar 

  • Hill MS, Quesada CJ (2010) Calcein mark retention in chinook salmon and steelhead fry in artificial and natural rearing environments. N Am J Fish Manag 30:1370–1375

    Article  Google Scholar 

  • Hindar K, Fleming IA, McGinnity P, Diserud O (2006) Genetic and ecological effects of salmon farming on wild salmon: modelling from experimental results. ICES J Mar Sci 63:1234–1247

    Article  CAS  Google Scholar 

  • Honeyfield DC, Ostrowski CS, Fletcher JW, Mohler JW (2006) Dietary calcein marking of brook trout, Atlantic salmon, yellow perch, and coho salmon scales. N Am J Fish Manag 26:431–437

    Article  Google Scholar 

  • Honeyfield DC, Kehler T, Fletcher JW, Mohler JW (2008) Effect of artificial sunlight on the retention of external calcein marks on lake trout. N Am J Fish Manag 28:1243–1248

    Article  Google Scholar 

  • Honeyfield DC, Kindschi GA, Bell TA, Mohler JW (2011) Dietary calcein marking of shovelnose sturgeon and the effect of sunlight on mark retention. N Am J Aquacult 73:129–134

    Article  Google Scholar 

  • Huelga-Suarez G, Moldovan M, Garcia-Valiente A, Garcia-Vazquez E, Garcia Alonso JI (2012) Individual-specific transgenerational marking of fish populations based on a barium dual-isotope procedure. Anal Chem 84:127–133

    Article  PubMed  CAS  Google Scholar 

  • Huelga-Suarez G, Fernández B, Moldovan M, García Alonso JI (2013) Detection of transgenerational barium dual-isotope marks in salmon otoliths by means of LA-ICP-MS. Anal Bioanal Chem 405:2901–2909

    Article  PubMed  CAS  Google Scholar 

  • Hutchings JA, Fraser DJ (2008) The nature of fisheries- and farming-induced evolution. Mol Ecol 17:294–313

    Article  PubMed  Google Scholar 

  • Iglesias J, Rodriguez-Ojea G (1997) The use of alizarin complexone for immersion marking of the otoliths of embryos and larvae of the turbot, Scophthalmus maximus (L.): dosage and treatment time. Fish Manag Ecol 4:405–417

    Article  Google Scholar 

  • Inoue K, Yoshida M, Takahashi M, Shibutani M, Takagi H, Hirose M, Nishikawa A (2009) Induction of kidney and liver cancers by the natural food additive madder color in a two-year rat carcinogenicity study. Food Chem Toxicol 47:184–191

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Drumm A, McEvoy S, Jensen Ø, Mendiola D, Gabiña G, Borg JA, Papageorgiou N, Karakassis Y, Black KD (2015) A pan-European valuation of the extent, causes and cost of escape events from sea cage fish farming. Aquaculture 436:21–26

    Article  Google Scholar 

  • Jensen Ø, Dempster T, Thorstad EB, Uglem I, Fredheim A (2010) Escapes of fishes from Norwegian sea-cage aquaculture: causes, consequences and prevention. Aquacult Environ Interact 1:71–83

    Article  Google Scholar 

  • Jones GP, Milicich MJ, Emslie MJ, Lunow C (1999) Self-recruitment in a coral reef fish population. Nature 402:802–804

    Article  CAS  Google Scholar 

  • Kraus RT, Secor DH (2004) Incorporation of strontium into otoliths of an estuarine fish. J Exp Mar Biol Ecol 302:85–106

    Article  CAS  Google Scholar 

  • Kuroki M, Buckley R, LeClair L, Hauser L (2010) Validation and efficacy of transgenerational mass marking of otoliths in viviparous fish larvae. J Fish Biol 77:292–298

    Article  PubMed  CAS  Google Scholar 

  • Lagardère F, Thibaudeau K, Bégout Anras ML (2000) Feasibility of otolith markings in large juvenile turbot, Scophthalmus maximus, using immersion in alizarin-red S solutions. ICES J Mar Sci 57:1175–1181

    Article  Google Scholar 

  • Liu Q, Zhang XM, Zhang PD, Nwafili SA (2009) The use of alizarin red S and alizarin complexone for immersion marking Japanese flounder Paralichthys olivaceus (T.). Fish Res 98:67–74

    Article  Google Scholar 

  • Madeira MJ, Gómez-Moliner BJ, Barbe AM (2005) Genetic introgression on freshwater fish populations caused by restocking programmes. Biol Invasions 7:117–125

    Article  Google Scholar 

  • McGinnity P, Prodohl P, Ferguson A, Hynes R, Maoileidigh N, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G, Taggart J, Cross T (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc Lond B Biol 270:2443–2450

    Article  Google Scholar 

  • Meyer S, Sørensen SR, Peck MA, Støttrup JG (2012) Sublethal effects of alizarin complexone marking on Baltic cod (Gadus morhua) eggs and larvae. Aquaculture 324:158–164

    Article  CAS  Google Scholar 

  • Michibata H (1981) Labeling fish with an activable element through their diet. Can J Fish Aquat Sci 38:1281–1282

    Article  Google Scholar 

  • Mohler JW (1997) Immersion of larval Atlantic salmon in calcein solutions to induce a non-lethally detectable mark. N Am J Fish 17:751–756

    Article  Google Scholar 

  • Mohler JW (2003) Producing fluorescent marks on Atlantic salmon fin rays and scales with calcein via osmotic induction. N Am J Fish Manag 23:1108–1113

    Article  Google Scholar 

  • Morita K, Takahashi S, Ohkuma K, Nagasawa T (2013) Estimation of the proportion of wild chum salmon Oncorhynchus keta in Japanese hatchery rivers. Nippon Suisan Gakk 79:206–213

    Article  Google Scholar 

  • Munk KM (1999) Discrimination of multi-country thermal mark codes by augmentation of coding schemes or marking mechanisms. (NPAFC Doc. 396). Alaska Department of Fish and Game CWT and Otolith Processing Lab, Box 25526, Juneau, Alaska, 99802, p 14

  • Munk KM, Smoker WW, Beard DR, Mattson RW (1993) A hatchery water-heating system and its application to 100% thermal marking of incubating salmon. Prog Fish Cult 55:284–288

    Article  Google Scholar 

  • Munro AR, Gillanders BM, Elsdon TS, Crook DA, Sanger AC (2008) Enriched stable isotope marking of juvenile golden perch (Macquaria ambigua) otoliths. Can J Fish Aquat Sci 65:276–285

    Article  CAS  Google Scholar 

  • Munro AR, Gillanders BM, Thurstant S, Crook DA, Sanger AC (2009) Transgenerational marking of freshwater fishes with enriched stable isotopes: a tool for fisheries management and research. J Fish Biol 75:668–684

    Article  PubMed  CAS  Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Negus MT, Tureson FT (2004) Retention and nonlethal external detection of calcein marks in rainbow trout and Chinook salmon. N Am J Fish Manag 24:741–747

    Article  Google Scholar 

  • Odense PH, Logan VH (1974) Marking Atlantic salmon (Salmo salar) with oxytetracycline. J Fish Res B Can 31:348–350

    Article  Google Scholar 

  • Ophel IL, Judd JM (1968) Marking fish with stable strontium. J Fish Res B Can 25:1333–1337

    Article  Google Scholar 

  • Pérez de Nanclares M, Dessen JE, Rørvik KA, Thomassen Y, Thomassen MS (2016) Feasibility of using rare earth elements (REEs) to mark and identify escaped farmed Atlantic salmon Salmo salar L. Aquacult Res 47:1885–1898

    Article  CAS  Google Scholar 

  • Reimer T, Dempster T, Warren-Myers F, Jensen AJ, Swearer SE (2016) High prevalence of vaterite in sagittal otoliths causes hearing impairment in farmed fish. Sci Rep 6:25249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richard A, O’Rourke J, Rubin JF (2014) External fluorescence retention of calcein-marked juvenile brown trout Salmo trutta raised in natural and artificial environments. J Fish Biol 84:73–84

    Article  PubMed  CAS  Google Scholar 

  • Roy A-S, Frisch AJ, Syms C, Thorrold SR, Jones GP (2013) Retention of a transgenerational marker (137Barium) in tissues of adult female anemonefish and assessment of physiological stress. Environ Biol Fish 96:459–466

    Article  Google Scholar 

  • Sanger AC, Crook DA (2007) Chemical marker registration: final report. Murray–Darling Basin Authority, Canberra, ACT

  • Schroder SL, Knudsen CM, Volk EC (1995) Marking salmon fry with strontium chloride solutions. Can J Fish Aquat Sci 52:1141–1149

    Article  CAS  Google Scholar 

  • Secor DH, White MG, Dean JM (1991) Immersion marking of larval and juvenile hatchery-produced striped bass with oxytetracycline. Trans Am Fish Soc 120:261–266

    Article  Google Scholar 

  • Shippentower GE, Schreck CB, Heppell SA (2011) Who’s your momma? Recognizing maternal origin of juvenile steelhead using injections of strontium chloride to create transgenerational marks. Trans Am Fish Soc 140:1330–1339

    Article  CAS  Google Scholar 

  • Simon J, Dörner H, Richter C (2009) Growth and mortality of European glass eel Anguilla anguilla marked with oxytetracycline and alizarin red. J Fish Biol 74:289–295

    Article  PubMed  CAS  Google Scholar 

  • Skalski JR, Buchanan RA, Griswold J (2009) Review of marking methods and release-recapture designs for estimating the survival of very small fish: examples from the assessment of salmonid fry survival. Rev Fish Sci 17:391–401

    Article  Google Scholar 

  • Smith JE, Macreadie PI, Swearer SE (2010) An osmotic induction method for externally marking saltwater fishes, Stigmatopora argus and Stigmatopora nigra, with calcein. J Fish Biol 76:1055–1060

    Article  Google Scholar 

  • Starrs D, Davis JT, Schlaefer J, Ebner BC, Eggins SM, Fulton CJ (2014a) Maternally transmitted isotopes and their effects on larval fish: a validation of dual isotopic marks within a meta-analysis context. Can J Fish Aquat Sci 71:387–397

    Article  CAS  Google Scholar 

  • Starrs D, Ebner BC, Eggins SM, Fulton CJ (2014b) Longevity in maternal transmission of isotopic marks in a tropical freshwater rainbowfish and the implications for offspring morphology. Mar Freshw Res 65:400–408

    Article  Google Scholar 

  • Stubbing DN, Moss RD (2007) Success of calcein marking via osmotic induction in brown trout fry, Salmo trutta. Fish Manag Ecol 14:231–233

    Article  Google Scholar 

  • Taylor MD, Fielder DS, Suthers IM (2005) Batch marking of otoliths and fin spines to assess the stock enhancement of Argyrosomus japonicus. J Fish Biol 66:1149–1162

    Article  Google Scholar 

  • Teletchea F (2015) Domestication of marine fish species: update and perspectives. J Mar Sci Eng 3:1227–1243

    Article  Google Scholar 

  • Thorrold SR, Jones GP, Planes S, Hare JA (2006) Transgenerational marking of embryonic otoliths in marine fishes using barium stable isotopes. Can J Fish Aquat Sci 63:1193–1197

    Article  CAS  Google Scholar 

  • Toften H, Jobling M (1996) Development of spinal deformities in Atlantic salmon and Arctic charr fed diets supplemented with oxytetracycline. J Fish Biol 49:668–677

    Article  CAS  Google Scholar 

  • Toledo-Guedes K, Sánchez-Jerez P, Mora-Vidal J, Girard D, Brito A (2012) Escaped introduced sea bass (Dicentrarchus labrax) infected by Sphaerospora testicularis (Myxozoa) reach maturity in coastal habitats off Canary Islands. Mar Ecol 33:26–31

    Article  Google Scholar 

  • Trefethen PS, Novotny AJ (1963) Marking fingerling salmon with trace elements and non-radioactive isotopes. In: North Atlantic fish marking symposium special publication No. 4, vol 11, pp 64–65

  • Van der Walt B, Faragher RA (2003) Otolith marking of rainbow trout fry by immersion in low concentrations of alizarin complexone. N Am J Fish Manag 23:141–148

    Article  Google Scholar 

  • Volk EC, Schroder SL, Grimm JJ, Ackley HS (1994) Use of bar code symbology to produce multiple thermally induced marks. Trans Am Fish Soc 123:811–816

    Article  Google Scholar 

  • Volk EC, Schroder SL, Grimm JJ (1999) Otolith thermal marking. Fish Res 43:205–219

    Article  Google Scholar 

  • Walther BD, Thorrold SR (2006) Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar Ecol Prog Ser 311:125–130

    Article  CAS  Google Scholar 

  • Warren-Myers FW (2015) Enriched stable isotope mass marking techniques for aquaculture and fisheries. Doctoral dissertation

  • Warren-Myers F, Dempster T, Fjelldal PG, Hansen T, Jensen AJ, Swearer SE (2014) Stable isotope marking of otoliths during vaccination: a novel method for mass-marking fish. Aquacult Environ Interact 5:143–154

    Article  Google Scholar 

  • Warren-Myers F, Dempster T, Fjelldal PG, Hansen T, Swearer SE (2015a) An industry-scale mass marking technique for tracing farmed fish escapees. PLoS ONE 10:e0118594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warren-Myers F, Dempster T, Fjelldal PG, Hansen T, Swearer SE (2015b) Immersion during egg swelling results in rapid uptake of stable isotope markers in salmonid otoliths. Can J Fish Aquat Sci 72:722–727

    Article  CAS  Google Scholar 

  • Warren-Myers F, Dempster T, Fjelldal PG, Hansen T, Swearer SE (2015c) Mass marking farmed Atlantic salmon with transgenerational isotopic fingerprints to trace farm fish escapees. Aquacult Environ Interact 7:75–87

    Article  Google Scholar 

  • Weber D, Ridgway GJ (1967) Marking Pacific salmon with tetracycline antibiotics. J Fish Res Board Can 24:849–865

    Article  Google Scholar 

  • Wells RJD, Smith SE, Kohin S, Freund E, Spear N, Ramon DA (2013) Age validation of juvenile shortfin mako (Isurus oxyrinchus) tagged and marked with oxytetracycline off southern California. Fish Bull 111:147–160

    Article  Google Scholar 

  • Wickström H, Sjöberg NB (2014) Traceability of stocked eels—the Swedish approach. Ecol Freshw Fish 23:33–39

    Article  Google Scholar 

  • Williamson DH, Jones GP, Thorrold SR, Frisch AJ (2009a) Transgenerational marking of marine fish larvae: stable isotope retention, physiological effects and health issues. J Fish Biol 74:891–905

    Article  PubMed  CAS  Google Scholar 

  • Williamson DH, Jones GP, Thorrold SR (2009b) An experimental evaluation of transgenerational isotope labelling in a coral reef grouper. Mar Biol 156:2517–2525

    Article  Google Scholar 

  • Woodcock SH, Gillanders BM, Munro AR, McGovern F, Crook DA, Sanger AC (2011a) Using enriched stable isotopes of barium and magnesium to batch mark otoliths of larval golden perch (Macquaria ambigua, Richardson). Ecol Freshw Fish 20:157–165

    Article  Google Scholar 

  • Woodcock SH, Gillanders BM, Munro AR, Crook DA, Sanger AC (2011b) Determining mark success of 15 combinations of enriched stable isotopes for the batch marking of larval otoliths. N Am J Fish Manag 31:843–851

    Article  Google Scholar 

  • Woodcock SH, Grieshaber CA, Walther BD (2013) Dietary transfer of enriched stable isotopes to mark otoliths, fin rays and scales. Can J Fish Aquat Sci 70:1–4

    Article  CAS  Google Scholar 

  • Zitek A, Irrgeher J, Kletzl M, Weismann T, Prohaska T (2013) Transgenerational marking of brown trout Salmo trutta f.f., using an 84Sr spike. Fish Manag Ecol 20:354–361

    Article  Google Scholar 

  • Zitek A, Irrgeher J, Cervicek M, Horsky M, Kletzl M, Weismann T, Prohaska T (2014) Individual-specific transgenerational marking of common carp Cyprinus carpio, L., using 86Sr/84Sr double spikes. Mar Freshw Res 65:978–986

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Albert Shimmins Postgraduate Writing-up Award, Faculty of Science, University of Melbourne, Victoria 3010, Australia. Australian Postgraduate Award, Faculty of Science, University of Melbourne, Victoria 3010, Australia. Norwegian Fisheries and Aquaculture Research Fund (project #900710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fletcher Warren-Myers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren-Myers, F., Dempster, T. & Swearer, S.E. Otolith mass marking techniques for aquaculture and restocking: benefits and limitations. Rev Fish Biol Fisheries 28, 485–501 (2018). https://doi.org/10.1007/s11160-018-9515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-018-9515-4

Keywords

Navigation