Skip to main content
Log in

Isolating the influence of ontogeny helps predict island-wide variability in fish otolith chemistry

  • Original Research
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

For marine fishes of commercial interest, defining how individuals vary in certain attributes, through ontogeny, and across space and time, can help expose the structure of harvested populations and guide their management. The chemical markers locked within otoliths are, in principle, ideal for such applications, providing life-long, bio-environmental records for individuals and populations. However, substantial uncertainty still surrounds how intrinsic (i.e., within-individual) and extrinsic (i.e., environmental) processes shape chemical incorporation into otoliths, constraining our ability to predict marker variability when sampling is patchy. To tackle these issues, we measured otolith elemental (Li, Mg, Ca, Mn, Zn, Sr, Ba) and stable isotopic (δ13C, δ18O) concentrations from juvenile Atlantic herring (Clupea harengus) captured in Icelandic nursery sites, and built models to isolate ontogenetic (i.e., age-, growth-related) from environmental influences on otolith chemistry. Otolith Li:Ca, Mg:Ca, Mn:Ca and Sr:Ca declined with age within sites. Age slopes differed among sites for Li:Ca and Mg:Ca, and Sr:Ca was lower in larger fish within an age-class. Individual-level variation (i.e., within site, within age-class) was high for all markers, our models highlighting the importance of temperature and salinity (or proxies these represent) in explaining population-level δ13C and δ18O trends. Age- and year-specific predictions for each marker, at each site, generally accorded well with empirical observations, providing inference on island-wide heterogeneity in otolith chemistry across the juveniles’ full distributional range. Such ‘isoscapes’, generated from mechanistically-focused models as presented here, might benefit investigations of population structure for other exploited species, particularly where sampling limitations hamper fishery-management efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Spatial predictions were made for age 1 and age 2 herring for all element:Ca, and for age 2 only for δ13C and δ18O.

References

  • Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim et Cosmochim Acta 64:1705–1714

    Article  CAS  Google Scholar 

  • Berg F, Almeland OW, Skadal J, Slotte A, Andersson L, Folkvord A (2018) Genetic factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic herring (Clupea harengus). PLoS ONE 13:e0190995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernreuther M, Herrmann JP, Peck MA, Temming A (2013) Growth energetics of juvenile herring, Clupea harengus L.: food conversion efficiency and temperature dependency of metabolic rate. J Appl Ichthyol 29:331–340

    Article  CAS  Google Scholar 

  • Borelli G, Mayer-Gostan N, De Pontual H, Boeuf G, Payan P (2001) Biochemical relationships between endolymph and otolith matrix in the trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Calcif Tissue Int 69:356–364

    Article  CAS  PubMed  Google Scholar 

  • Brophy D, Danilowicz BS (2002) Tracing populations of Atlantic herring (Clupea harengus L.) in the Irish and Celtic Seas using otolith microstructure. ICES J Mar Sci 59:1305–1313

    Article  Google Scholar 

  • Brophy D, Jeffries TE, Danilowicz BS (2004) Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Mar Biol 144:779–786

    Article  CAS  Google Scholar 

  • Brown RJ, Severin KP (2009) Otolith chemistry analyses indicate that water Sr:Ca is the primary factor influencing otolith Sr:Ca for freshwater and diadromous fish but not for marine fish. Can J Fish Aquat Sci 66:1790–1808

    Article  CAS  Google Scholar 

  • Campana S (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297

    Article  CAS  Google Scholar 

  • Cardinale M, Casini M, Arrhenius F, Håkansson N (2003) Diel spatial distribution and feeding activity of herring (Clupea harengus) and sprat (Sprattus sprattus) in the Baltic Sea. Aquat Living Resour 16:283–292

    Article  Google Scholar 

  • Chang MY, Geffen AJ (2013) Taxonomic and geographic influences on fish otolith microchemistry. Fish Fish 14:458–492

    Article  Google Scholar 

  • Chittaro PM, Hogan JD, Gagnon J, Fryer BJ, Sale PF (2006) In situ experiment of ontogenetic variability in the otolith chemistry of Stegastes partitus. Mar Biol 149:1227–1235

    Article  CAS  Google Scholar 

  • Chung M-T, Trueman CN, Godiksen JA, Holmstrup ME, Grønkjær P (2019) Field metabolic rates of teleost fishes are recorded in otolith carbonate. Commun Biol 2:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke LM, Thorrold SR, Conover DO (2011) Population differences in otolith chemistry have a genetic basis in Menidia menidia. Can J Fish Aquat Sci 68:105–114

    Article  CAS  Google Scholar 

  • Coates WD, Hale R, Morrongiello JR (2019) Dispersal decisions and personality in a freshwater fish. Anim Behav 157:209–218

    Article  Google Scholar 

  • Cote J, Fogarty S, Weinersmith K, Brodin T, Sih A (2010) Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proc R Soc Lond B Biol 277:1571–1579

    Article  Google Scholar 

  • Crichton RR (2008) Biological inorganic chemistry. Elsevier, Amsterdam

  • Crook DA, Buckle DJ, Allsop Q, Baldwin W, Saunders TM, Kyne PM, Woodhead JD, Maas R, Roberts B, Douglas MM (2017) Use of otolith chemistry and acoustic telemetry to elucidate migratory contingents in barramundi Lates calcarifer. Mar Freshw Res 68:1554–1566

    Article  Google Scholar 

  • da Silva A (2017) ‘biotools’. Tools for biometry and applied statistics in agricultural Science. R package version 3.1. https://cran.r-project.org/web/packages/biotools/. Accessed 11 Dec 2019

  • Darnaude AM, Hunter E (2018) Validation of otolith δ18O values as effective natural tags for shelf-scale geolocation of migrating fish. Mar Ecol Prog Ser 598:167–185

    Article  Google Scholar 

  • Dingemanse NJ, Dochtermann NA (2013) Quantifying individual variation in behaviour: mixed-effect modelling approaches. J Anim Ecol 82:39–54

    Article  PubMed  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Doubleday ZA, Harris HH, Izzo C, Gillanders BM (2014) Strontium randomly substituting for calcium in fish otolith aragonite. Anal Chem 86:865–869

    Article  CAS  PubMed  Google Scholar 

  • Elsdon TS, Gillanders BM (2004) Fish otolith chemistry influenced by exposure to multiple environmental variables. J Exp Mar Biol Ecol 313:269–284

    Article  CAS  Google Scholar 

  • Ewart KV, Fletcher GL (1990) Isolation and characterization of antifreeze proteins from smelt (Osmerus Mordax) and Atlantic herring (Clupea harengus harengus). Can J Zool 68:1652–1658

    Article  CAS  Google Scholar 

  • Fablet R, Pecquerie L, de Pontual H, Høie H, Millner R, Mosegaard H, Kooijman SALM (2011) Shedding light on fish otolith biomineralization using a bioenergetic approach. PLoS ONE 6:e27055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiksen Ø, Jørgensen C, Kristiansen T, Vikebø F, Huse G (2007) Linking behavioural ecology and oceanography: larval behaviour determines growth, mortality and dispersal. Mar Ecol Prog Ser 347:195–205

    Article  Google Scholar 

  • Flegal JM, Hughes J, Vats D (2016) mcmcse: Monte Carlo standard errors for MCMC. R package version 1.2-1. https://cran.r-project.org/web/packages/mcmcse/

  • Freshwater C, Trudel M, Beacham TD, Gauthier S, Johnson SC, Neville C-E, Juanes F (2019) Individual variation, population-specific behaviours and stochastic processes shape marine migration phenologies. J Anim Ecol 88:67–78

    Article  PubMed  Google Scholar 

  • Geffen AJ (2012) Otolith oxygen and carbon stable isotopes in wild and laboratory-reared plaice (Pleuronectes platessa). Environ Biol Fish 95:419–430

    Article  Google Scholar 

  • Gelman A (2008) Scaling regression inputs by dividing by two standard deviations. Stat Med 27:2865–2873

    Article  PubMed  Google Scholar 

  • Gillikin D, Lorrain A, Bouillon S, Willenz P, Dehairs F (2006) δ13C in Mytilus edulis shells: relation to salinity, DIC, phytoplankton and metabolism. Org Geochem 37:1371–1382

    Article  CAS  Google Scholar 

  • Goolish EM (1995) The metabolic consequences of body size. Biochem Mol Biol Fish 4:335–366

    Article  CAS  Google Scholar 

  • Grabowski TB, Boswell KM, McAdam BJ, Wells RJD, Marteinsdóttir G (2012) Characterization of Atlantic cod spawning habitat and behavior in Icelandic coastal waters. PLoS ONE 7:e51321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grammer GL, Morrongiello JR, Izzo C, Hawthorne PJ, Middleton JF, Gillanders BM (2017) Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry. Ecol Monogr 87:487–507

    Article  Google Scholar 

  • Grønkjær P (2016) Otoliths as individual indicators: a reappraisal of the link between fish physiology and otolith characteristics. Mar Freshw Res 67:881–888

    Article  Google Scholar 

  • Guðmundsdóttir A, Óskarsson GJ, Sveinbjörnsson S (2007) Estimating year-class strength of Icelandic summer-spawning herring on the basis of two survey methods. ICES J Mar Sci 64:1182–1190

    Article  Google Scholar 

  • Hadfield J (2010) MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22

    Article  Google Scholar 

  • Høie H, Folkvord A, Otterlei E (2003) Effect of somatic and otolith growth rate on stable isotopic composition of early juvenile cod (Gadus morhua L.) otoliths. J Exp Mar Biol Ecol 289:41–58

    Article  Google Scholar 

  • Holliday FGT, Blaxter JHS (1960) The effects of salinity on the developing eggs and larvae of the herring. J Mar Biol Assoc UK 39:591–603

    Article  Google Scholar 

  • Holt RE, Jørgensen C (2014) Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua). Conserv Physiol 2:cou050

    Article  PubMed  PubMed Central  Google Scholar 

  • Huijbers CM, Nagelkerken I, Debrot AO, Jongejans E (2013) Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish. Ecology 94:1859–1870

    Article  PubMed  Google Scholar 

  • Hüssy K, Mosegaard H, Jessen F (2004) Effect of age and temperature on amino acid composition and the content of different protein types of juvenile Atlantic cod (Gadus morhua) otoliths. Can J Fish Aquat Sci 61:1012–1020

    Article  Google Scholar 

  • ICES (2017) Report of the North-Western Working Group, 27 April–4 May 2017. ICES CM 2017/ACOM:08, Copenhagen, Denmark

  • Izzo C, Doubleday ZA, Gillanders BM (2016) Where do elements bind within the otoliths of fish? Mar Freshw Res 67:1072–1076

    Article  CAS  Google Scholar 

  • Izzo C, Reis-Santos P, Gillanders BM (2018) Otolith chemistry does not just reflect environmental conditions: a meta-analytic evaluation. Fish Fish 19:441–454

    Article  Google Scholar 

  • Jaeger BC, Edwards LJ, Das K, Sen PK (2017) An R2 statistic for fixed effects in the generalized linear mixed model. J Appl Stat 44:1086–1105

    Article  Google Scholar 

  • Jakobsson J, Stefánsson G (1999) Management of summer-spawning herring off Iceland. ICES J Mar Sci 56:827–833

    Article  Google Scholar 

  • Johnson PCD (2014) Extension of Nakagawa & Schielzeth’s \( R^{2}_{{\text{GLMM}}} \) to random slopes models. Methods Ecol Evol 5:944–946

  • Kalish JM (1989) Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. J Exp Mar Biol Ecol 132:151–178

    Article  CAS  Google Scholar 

  • Kalish JM (1991a) Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon. Mar Biol 47:37–47

    Article  Google Scholar 

  • Kalish JM (1991b) Determinants of otolith chemistry: seasonal variation in the composition of blood plasma, endolymph and otoliths of bearded rock cod Pseudophycis barbatus. Mar Ecol Prog Ser 74:137–159

    Article  CAS  Google Scholar 

  • Kalish JM (1991c) 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar Ecol Prog Ser 75:191–203

    Article  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Korkmaz S, Goksuluk D, Zararsiz G (2015) MVN: an R package for assessing multivariate normality. R J 6:151–162

    Article  Google Scholar 

  • Last JM (1989) The food of herring, Clupea harengus, in the North Sea, 1983–1986. J Fish Biol 34:489–501

    Article  Google Scholar 

  • Leitão AV, Hall ML, Venables B, Mulder RA (2019) Ecology and breeding biology of a tropical bird, the Lovely Fairy-Wren (Malurus amabilis). Emu 119:1–13

    Article  Google Scholar 

  • Limburg KE, Olson C, Walther Y, Dale D, Slomp CP, Høie H (2011) Tracking Baltic hypoxia and cod migration over millennia with natural tags. Proc Natl Acad Sci USA 108:E177–E182

    Article  PubMed  PubMed Central  Google Scholar 

  • Limburg KE, Wuenschel MJ, Hüssy K, Heimbrand Y (2018) Making the otolith magnesium chemical calendar-clock tick: plausible mechanism and empirical evidence. Rev Fish Sci Aquac 26:479–493

    Article  Google Scholar 

  • Link WA, Eaton MJ (2012) On thinning of chains in MCMC. Methods Ecol Evol 3:112–115

    Article  Google Scholar 

  • Loewen TN, Carriere B, Reist JD, Halden NM, Anderson WG (2016) Linking physiology and biomineralization processes to ecological inferences on the life history of fishes. Comp Biochem Phys A 202:123–140

    Article  CAS  Google Scholar 

  • Logemann K, Ólafsson J, Snorrason Á, Valdimarsson H, Marteinsdóttir G (2013) The circulation of Icelandic waters—a modelling study. Ocean Sci 9:931–955

    Article  Google Scholar 

  • Macdonald JI, Crook DA (2010) Variability in Sr:Ca and Ba:Ca ratios in water and fish otoliths across an estuarine salinity gradient. Mar Ecol Prog Ser 413:147–161

    Article  CAS  Google Scholar 

  • Macdonald JI, Farley JH, Clear NP, Williams AJ, Carter TI, Davies CR, Nicol SJ (2013) Insights into mixing and movement of South Pacific albacore Thunnus alalunga derived from trace elements in otoliths. Fish Res 148:56–63

    Article  Google Scholar 

  • Martin GB, Thorrold SR (2005) Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Mar Ecol Prog Ser 293:223–232

    Article  CAS  Google Scholar 

  • Martin GB, Wuenschel MJ (2006) Effect of temperature and salinity on otolith element incorporation in juvenile gray snapper Lutjanus griseus. Mar Ecol Prog Ser 324:229–239

    Article  CAS  Google Scholar 

  • Melancon S, Fryer BJ, Markham JL (2009) Chemical analysis of endolymph and the growing otolith: fractionation of metals in freshwater fish species. Environ Toxicol Chem 28:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe NB, Taylor AC, Thorpe JE (1995) Metabolic rate, social status and life-history strategies in Atlantic salmon. Anim Behav 49:431–436

    Article  Google Scholar 

  • Mirasole A, Gillanders BM, Reis-Santos P, Grassa F, Capasso G, Scopelliti G, Mazzola A, Vizzini S (2017) The influence of high pCO2 on otolith shape, chemical and carbon isotope composition of six coastal fish species in a Mediterranean shallow CO2 vent. Mar Biol 164:191

    Article  CAS  Google Scholar 

  • Moksness E (1992) Validation of daily increments in the otolith microstructure of Norwegian spring-spawning herring (Clupea harengus). ICES J Mar Sci 49:231–235

    Article  Google Scholar 

  • Morales-Nin B, Swan SC, Gordon JDM, Palmer M, Geffen AJ, Shimmield T, Sawyer T (2005) Age-related trends in otolith chemistry of Merluccius merluccius from the northeastern Atlantic Ocean and the western Mediterranean Sea. Mar Freshw Res 56:599–607

    Article  CAS  Google Scholar 

  • Mosegaard H, Svedäng H, Taberman K (1988) Uncoupling of somatic and otolith growth rates in Arctic char (Salvelinus alpinus) as an effect of differences in temperature response. Can J Fish Aquat Sci 45:1514–1524

    Article  Google Scholar 

  • Mugiya Y (1966) Calcification in fish and shell-fish VI. Seasonal change in calcium and magnesium concentrations of the otolith fluid in some fish, with special reference to the zone formation of their otolith. Bull Jpn Sot Sci Fish 32:549–557

    Article  CAS  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Nanninga GB, Berumen ML (2014) The role of individual variation in marine larval dispersal. Front Mar Sci 1:7

    Article  Google Scholar 

  • Neubauer P, Shima JS, Swearer SE (2013) Inferring dispersal and migrations from incomplete geochemical baselines: analysis of population structure using Bayesian infinite mixture models. Methods Ecol Evol 4:836–845

    Article  Google Scholar 

  • Óskarsson GJ, Taggart CT (2009) Spawning time variation in Icelandic summer-spawning herring (Clupea harengus). Can J Fish Aquat Sci 66:1666–1681

    Article  Google Scholar 

  • Panfili J, Darnaude AM, Vigliola L, Jacquart A, Labonne M, Gilles S (2015) Experimental evidence of complex relationships between the ambient salinity and the strontium signature of fish otoliths. J Exp Mar Biol Ecol 467:65–70

    Article  CAS  Google Scholar 

  • Payan P, De Pontual H, Edeyer A, Borelli G, Boeuf G, Mayer-Gostan N (2004) Effects of stress on plasma homeostasis, endolymph chemistry, and check formation during otolith growth in rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 61:1247–1255

    Article  CAS  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  • Pörtner H, Peck M (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779

    Article  PubMed  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 11 Dec 2019

  • Radtke RL (1984) Formation and structural composition of larval striped mullet otoliths. Trans Am Fish Soc 113:186–191

    Article  Google Scholar 

  • Radtke RL, Townsend DW, Folsom SD, Morrison MA (1990) Strontium:calcium concentration ratios in otoliths of herring larvae as indicators of environmental histories. Environ Biol Fish 27:51–61

    Article  Google Scholar 

  • Ranaldi MM, Gagnon MM (2008) Zinc incorporation in the otoliths of juvenile pink snapper (Pagrus auratus Forster): the influence of dietary versus waterborne sources. J Exp Mar Biol Ecol 360:56–62

    Article  CAS  Google Scholar 

  • Reis-Santos P, Gillanders BM, Tanner SE, Vasconcelos RP, Elsdon TS, Cabral HN (2012) Temporal variability in estuarine fish otolith elemental fingerprints: implications for connectivity assessments. Estuar Coast Shelf Sci 112:216–224

    Article  CAS  Google Scholar 

  • Rosenfeld J, Van Leeuwen T, Richards J, Allen D (2015) Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life-history adaptation in salmonids. J Anim Ecol 84:4–20

    Article  PubMed  Google Scholar 

  • Rubin D (1976) Inference and missing data. Biometrika 63:581–592

    Article  Google Scholar 

  • Ruttenberg BI, Hamilton SL, Hickford MJH, Paradis GL, Sheehy MS, Standish JD, Ben-Tzvi O, Warner RR (2005) Elevated levels of trace elements in cores of otoliths and their potential for use as natural tags. Mar Ecol Prog Ser 297:273–281

    Article  CAS  Google Scholar 

  • Sadovy Y, Severin K (1994) Elemental patterns in red hind (Epinephelus guftatus) otoliths from Bermuda and Puerto Rico reflect growth rate, not temperature. Can J Fish Aquat Sci 51:133–141

    Article  CAS  Google Scholar 

  • Schwarcz H, Gao Y, Campana S, Browne D, Knyf M, Brand U (1998) Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 55:1798–1806

    Article  Google Scholar 

  • Shiao J-C, Shirai K, Tanaka K, Takahata N, Sano Y, Hsiao S-Y, Lee D-C, Tseng Y-C (2018) Assimilation of nitrogen and carbon isotopes from fish diets to otoliths as measured by nanoscale secondary ion mass spectrometry. Rapid Commun Mass Spectrom 32:1250–1256

    Article  CAS  PubMed  Google Scholar 

  • Shima JS, Swearer SE (2010) The legacy of dispersal: larval experience shapes persistence later in the life of a reef fish. J Anim Ecol 79:1308–1314

    Article  PubMed  Google Scholar 

  • Shima JS, Swearer SE (2016) Evidence and population consequences of shared larval dispersal histories in a marine fish. Ecology 97:25–31

    Article  PubMed  Google Scholar 

  • Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378

    Article  PubMed  Google Scholar 

  • Solomon CT, Weber PK, Cech JJ Jr, Ingram BL, Conrad ME, Machavaram MV, Pogodina AR, Franklin RL (2006) Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Can J Fish Aquat Sci 63:79–89

    Article  CAS  Google Scholar 

  • Stamps JA (2016) Individual differences in behavioural plasticities. Biol Rev 91:534–567

    Article  PubMed  Google Scholar 

  • Stanley R, Bradbury I, DiBacco C, Snelgrove P, Thorrold S, Killen S (2015) Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua). ICES J Mar Sci 72:2350–2363

    Article  Google Scholar 

  • Stoffel MA, Nakagawa S, Schielzeth H (2017) rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol Evol 8:1639–1644

    Article  Google Scholar 

  • Sturrock AM, Trueman CN, Darnaude A, Hunter E (2012) Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? J Fish Biol 81:766–795

    Article  CAS  PubMed  Google Scholar 

  • Sturrock AM, Trueman CN, Milton JA, Waring CP, Cooper MJ, Hunter E (2014) Physiological influences can outweigh environmental signals in otolith microchemistry research. Mar Ecol Prog Ser 500:245–264

    Article  CAS  Google Scholar 

  • Sturrock AM, Hunter E, Milton JA, Johnson RC, Waring CP, Trueman CN, EIMF (2015) Quantifying physiological influences on otolith microchemistry. Methods Ecol Evol 6:806–816

    Article  Google Scholar 

  • Swearer SE, Forrester GE, Steele MA, Brooks AJ, Lea DW (2003) Spatio-temporal and interspecific variation in otolith trace-elemental fingerprints in a temperate estuarine fish assemblage. Estuar Coast Shelf Sci 56:1111–1123

    Article  CAS  Google Scholar 

  • Thomas OR, Swearer SE (2019) Otolith biochemistry—a review. Rev Fish Sci Aquac 27:458–489

    Article  Google Scholar 

  • Thomas OR, Ganio K, Roberts BR, Swearer SE (2017) Trace element–protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. Metallomics 9:239–249

    Article  CAS  PubMed  Google Scholar 

  • Thorrold SR, Swearer SE (2009) Otolith chemistry. In: Green BS, Mapstone BD, Carlos G, Begg GA (eds) Tropical fish otoliths: information for assessment, management and ecology. Springer, Netherlands

    Google Scholar 

  • Thorrold SR, Jones CM, Swart PK, Targett TE (1998) Accurate classification of juvenile weakfish Cynoscion regalis to estuarine nursery areas based on chemical signatures in otoliths. Mar Ecol Prog Ser 173:253–265

    Article  CAS  Google Scholar 

  • Tohse H, Murayama E, Ohira T, Takagi Y, Nagasawa H (2006) Localization and diurnal variations of carbonic anhydrase rnRNA expression in the inner ear of the rainbow trout Oncorhynchus mykiss. Comp Biochem Physiol B Biochem Mol Biol 145:257–264

    Article  CAS  PubMed  Google Scholar 

  • Townsend DW, Radtke RL, Morrison MA, Folsom SD (1989) Recruitment implications of larval herring overwintering distributions in the Gulf of Maine, inferred using a new otolith technique. Mar Ecol Prog Ser 55:1–13

    Article  Google Scholar 

  • Townsend DW, Radtke RL, Corwin S, Libby DA (1992) Strontium:calcium ratios in juvenile Atlantic herring Clupea harengus L. otoliths as a function of water temperature. J Exp Mar Biol Ecol 160:131–140

    Article  CAS  Google Scholar 

  • Turner SM, Limburg KE (2015) Does daily growth affect the rate of manganese uptake in juvenile river herring otoliths? Trans Am Fish Soc 144:873–881

    Article  CAS  Google Scholar 

  • Valdimarsson H, Astthorsson OS, Palsson J (2012) Hydrographic variability in Icelandic waters during recent decades and related changes in distribution of some fish species. ICES J Mar Sci 69:816–825

    Article  Google Scholar 

  • Van Leeuwen TE, Rosenfeld JS, Richards JG (2012) Effects of food ration on SMR: influence of food consumption on individual variation in metabolic rate in juvenile coho salmon (Onchorhynchus kisutch). J Anim Ecol 81:395–402

    Article  PubMed  Google Scholar 

  • Walther BD, Thorrold SR (2006) Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar Ecol Prog Ser 311:125–130

    Article  CAS  Google Scholar 

  • Walther BD, Kingsford MJ, Callaghan MDO, McCulloch MT (2010) Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish. Environ Biol Fish 89:441–451

    Article  Google Scholar 

  • Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. Aquaculture 151:185–207

    Article  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This work was funded by the Icelandic Association of Herring Fisheries under ‘Rannsóknarsjóðs síldarútvegsins 2013’, and by the Norden Top-Level Research Initiative subprogram ‘Effect Studies and Adaptation to Climate Change’, through the Nordic Centre for Research on Marine Ecosystems and Resources Under Climate Change (NorMER). We thank P. Reynisson, I. Jónsdóttir, G. Óskarsson, M. Danielsen, G. Jóhannsson and the crew aboard w/w Dröfn RE-35 for assistance with sample collection, and A. Greig for technical support during the LA-ICP-MS analyses. Thanks also to D. Eme and J. Morrongiello for lively discussions on the modelling approach, and to J. Morrongiello, D. Crook, G. Huse, G. Óskarsson, I. Jónsdóttir, Þ. Sigurðsson and A. Leitão for reviewing early drafts and providing insightful suggestions that greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jed I. Macdonald.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 134 kb)

Supplementary material 2 (PDF 7417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macdonald, J.I., Drysdale, R.N., Witt, R. et al. Isolating the influence of ontogeny helps predict island-wide variability in fish otolith chemistry. Rev Fish Biol Fisheries 30, 173–202 (2020). https://doi.org/10.1007/s11160-019-09591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-019-09591-x

Keywords

Navigation