Skip to main content
Log in

Synthesis of nano-CuI and its catalytic activity in the thermal decomposition of ammonium perchlorate

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nano-CuI was fabricated by an element-direct-reaction route at 40 °C in acetonitrile, and used as a catalyst in the thermal decomposition of ammonium perchlorate. The effects of polyvinyl pirrolidone (PVP) as an additive in the preparation of the catalyst and the addition amount of the catalyst in thermal decomposition reaction on the catalytic activity were investigated. Meanwhile, the morphologies and composition of the catalyst were also identified by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that nano-CuI can remarkably decrease the higher decomposition temperature of ammonium perchlorate by more than 100 °C, and that the temperature can be further reduced by using the nano-CuI catalyst with PVP as an additive in preparation. In addition, smaller crystallite size and increasing addition amount of nano-CuI in the thermal decomposition are favorable for improving its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Biju, M.A. Khader, Mater. Sci. Eng. A 304–306, 814–817 (2001)

    Google Scholar 

  2. Y. Ichiyanagi, N. Wakabalyashi, J. Yamazaki, S. Yamada, Y. Kimishima, E. Komatsu, H. Tajima, Phys. B 329–333, 862–863 (2003)

    Google Scholar 

  3. D.V. Survase, M. Gupta, S.N. Asthana, Prog. Cryst. Growth Charact. Mater. 45, 161–165 (2002)

    CAS  Google Scholar 

  4. A.A. Said, R. AI-Qasmi, Thermochim. Acta 27, 83–91 (1996)

    Google Scholar 

  5. N.B. Singh, A.K. Ojha, Thermochim. Acta 390, 67–72 (2002)

    CAS  Google Scholar 

  6. E.S. Freeman, D.A. Anderson, Nature 206, 378–379 (1965)

    Article  CAS  Google Scholar 

  7. E.S. Freeman, D.A. Anderson, J.J. Campisi, J. Phys. Chem. 64, 1727–1732 (1960)

    CAS  Google Scholar 

  8. D.A. Anderson, E.S. Freeman, J. Inorg. Nucl. Chem. 27, 1471–1476 (1965)

    CAS  Google Scholar 

  9. A.A. Said, E.A. Hassan, K.M.A. El-Salaam, Surf. Technol. 20, 131–137 (1983)

    CAS  Google Scholar 

  10. A.A. Said, E.A. Hassan, K.M.A. El-Salaam, Surf. Technol. 21, 117–123 (1984)

    Google Scholar 

  11. M. Shimokawade, R. Furuichi, T. Ishii, Thermochim. Acta 20, 347–361 (1977)

    Google Scholar 

  12. R. Hubaut, M. Daage, J.P. Bonnelle, Appl. Catal. 22, 231–241 (1986)

    CAS  Google Scholar 

  13. X.J. Shen, J.P. Yang, Y. Liu, Y.S. Luo, S.Y. Fu, New J. Chem. 35, 1403–1409 (2011)

    CAS  Google Scholar 

  14. Y.H. Yan, Y.C. Liu, L. Fang, Z.C. Lu, Z.B. Li, S.X. Zhou, Trans. Nonferrous Met. Soc. China 21, 359–363 (2011)

    CAS  Google Scholar 

  15. J.H. Li, D.P. Wang, Y.X. Xie, Tetrahedron Lett. 46, 4941–4944 (2005)

    CAS  Google Scholar 

  16. Y. Jiang, S.Y. Gao, Z.D. Li, X.X. Jia, Y.L. Chen, Mater. Sci. Eng. B 176, 1021–1027 (2011)

    CAS  Google Scholar 

  17. V.P.S. Perera, K. Temakene, Sol. Energy Mater. Sol. Cells 79, 249–255 (2003)

    CAS  Google Scholar 

  18. S.Y. Gao, Z.D. Li, X.X. Jia, K. Jiang, H.B. Zeng, Green Chem. 12, 1442–1447 (2010)

    CAS  Google Scholar 

  19. Y.Y. Zhou, M.K. Lu, G.J. Zhou, S.M. Wang, S.F. Wang, Mater. Lett. 60, 2184–2186 (2006)

    CAS  Google Scholar 

  20. B.V. Andryushechkin, K.N. Eltsov, V.M. Shevlyuga, Surf. Sci. 566–568, 203–209 (2004)

    Google Scholar 

  21. Y. Yang, X.F. Li, B. Zhao, H.L. Chen, X.M. Bao, Chem. Phys. Lett. 387, 400–404 (2004)

    CAS  Google Scholar 

  22. J. Li, H.X. Zhao, H.M. Jia, L.K. Zhang, Y.H. Gao, Z. Zheng, Chem. Lett. 40, 68–69 (2011)

    Google Scholar 

  23. Y.Y. Xu, D.R. Chen, X.L. Jiao, Mater. Lett. 63, 1859–1861 (2009)

    CAS  Google Scholar 

  24. T. Takeda, K. Matsunaga, T. Uruga, M. Takakura, T. Fujiwara, Tetrahedron Lett. 38, 2879–2882 (1997)

    CAS  Google Scholar 

  25. L.P. Zhang, F. Guo, X.Z. Liu, Mater. Res. Bull. 41, 905–908 (2006)

    CAS  Google Scholar 

  26. P.M. Sirimanne, M. Rusop, T. Shirata, T. Soga, T. Jimbo, Chem. Phys. Lett. 366, 485–489 (2002)

    CAS  Google Scholar 

  27. P.M. Sirimanne, M. Rusop, T. Shirata, T. Soga, T. Jimbo, Mater. Chem. Phys. 80, 461–465 (2003)

    CAS  Google Scholar 

  28. G. Zeni, J.V. Comasseto, Tetrahedron Lett. 40, 4619–4622 (1999)

    CAS  Google Scholar 

  29. K. Tennakone, G.R.R.A. Kumara, I.R.M. Kottedoda, V.P.S. Perera, G.M.L.P. Aponsu, K.G.U. Wijayantha, Sol. Energy Mater. Sol. Cells 55, 283–289 (1998)

    CAS  Google Scholar 

  30. M. Urbanova, J. Kupcik, P. Bezdicka, J. Subrt, J. Pola, C. R. Chimine 15, 511–516 (2012)

    CAS  Google Scholar 

  31. M. Rajic, M. Suceska, J. Therm. Anal. Calorim. 63, 375–386 (2001)

    CAS  Google Scholar 

  32. L.J. Chen, G.S. Li, P. Qi, L.P. Li, J. Therm. Anal. Calorim. 92, 765–769 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genxiang Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Cheng, Y., Lv, S. et al. Synthesis of nano-CuI and its catalytic activity in the thermal decomposition of ammonium perchlorate. Res Chem Intermed 41, 3885–3892 (2015). https://doi.org/10.1007/s11164-013-1497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1497-1

Keywords

Navigation