Skip to main content
Log in

γ-Fe2O3@SiO2@4-(sulfoamino)butanoic acid as a novel superparamagnetic nanocatalyst promoted green synthesis of 5-(aryl)-5H-spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-trione derivatives

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Grafting of 4-(sulfoamino)butanoic acid on superparamagnetic γ-Fe2O3@SiO2 nanoparticles afforded γ-Fe2O3@SiO2@4-(sulfoamino)butanoic acid as a novel heterogeneous nanocatalyst, which was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, field emission scanning electron microscopy, and thermal gravimetric analysis. In this research, we report a convenient and one-pot efficient direct protocol for the pseudo four-component preparation of 5-(aryl)-5H-spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-trione derivatives via cascade condensation reaction of 1,3-indandione and isatins with various aromatic amine in the presence of the catalytic amount of γ-Fe2O3@SiO2@4-(sulfoamino)butanoic acid under green conditions in aqueous media. This procedure offers several advantages such as: very easy reaction conditions, simple work-up, or purification, excellent yields, high purity of the desired product, atom economy, and short reaction times. The superparamagnetic catalyst is magnetically separable and retained chemical stability after recycling for at least five consecutive runs without detectable activity loss.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Scheme 4
Fig. 7

Similar content being viewed by others

References

  1. L. Wu, A. Mendoza-Garcia, Q. Li, S. Sun, Chem. Rev. 116, 10473 (2016)

    Article  CAS  Google Scholar 

  2. A.S. Paulus, R. Heinzler, H.W. Ooi, M. Franzreb, ACS Appl. Mater. Interfaces 7, 14279 (2015)

    Article  CAS  Google Scholar 

  3. A.P. Tiwari, S.J. Ghosh, S.H. Pawar, Anal. Methods 7, 10109 (2015)

    Article  CAS  Google Scholar 

  4. Q. Luo, X. Xiao, X. Dai, Z. Duan, D. Pan, H. Zhu, X. Li, L. Sun, K. Luo, Q. Gong, ACS Appl. Mater. Interfaces. 10, 1575 (2018)

    Article  CAS  Google Scholar 

  5. S.V. Sokolov, E. Kätelhön, R.G. Compton, J. Phys. Chem. C 119, 25093 (2015)

    Article  CAS  Google Scholar 

  6. M.F. Silva, A.A.W. Hechenleitner, J.M. Irache, A.J.A. de Oliveira, E.A. Gómez Pineda, Mater. Res. 18, 1400 (2015)

    Article  CAS  Google Scholar 

  7. X. Yao, J. Jing, F. Liang, Z. Yang, Macromolecules 49, 9618 (2016)

    Article  CAS  Google Scholar 

  8. A. Taghvimi, H. Hamishehkar, J. Chromatogr. B 1041–1042, 113 (2017)

    Article  Google Scholar 

  9. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 108, 2064 (2008)

    Article  CAS  Google Scholar 

  10. R.K. Sharma, M. Yadav, M.B. Gawande, in ACS Symp. Ser. 2016, p. 1

  11. N. Pal, A. Bhaumik, RSC Adv. 5, 24363 (2015)

    Article  CAS  Google Scholar 

  12. N. Taheri, F. Heidarizadeh, A. Kiasat, J. Magn. Magn. Mater. 428, 481 (2017)

    Article  CAS  Google Scholar 

  13. M. Abdollahi-Alibeik, A. Rezaeipoor-Anari, J. Magn. Magn. Mater. 398, 205 (2016)

    Article  CAS  Google Scholar 

  14. W. Wu, C.Z. Jiang, V.A.L. Roy, Nanoscale 8, 9421 (2016)

    Google Scholar 

  15. P. Saravanan, K. Jayamoorthy, S. Anandakumar, J. Lumin. 178, 241 (2016)

    Article  CAS  Google Scholar 

  16. D.G. Wang, C. Deraedt, J. Ruiz, D. Astruc, Acc. Chem. Res. 48, 1871 (2016)

    Article  Google Scholar 

  17. M. Zhang, Y.H. Liu, Z.R. Shang, H.C. Hu, Z.H. Zhang, Catal. Commun. 88, 39 (2017)

    Article  CAS  Google Scholar 

  18. M. Zhang, P. Liu, Y.H. Liu, Z.R. Shang, H.C. Hu, Z.H. Zhang, RSC Adv. 6, 106160 (2016)

    Article  CAS  Google Scholar 

  19. K.M. Ho, P. Li, Langmuir 24, 1801 (2008)

    Article  CAS  Google Scholar 

  20. K. Azizi, A. Heydari, RSC Adv. 4, 8812 (2008)

    Article  Google Scholar 

  21. K. Tsuji, J. Injuk, R.V. Grieken, X-Ray Spectrometry: Recent Technological Advances (Wiley, Hoboken, 2005)

    Google Scholar 

  22. D.R. Chandam, A.G. Mulik, D.R. Patil, A.P. Patravale, D.R. Kumbhar, M.B. Deshmukh, J. Mol. Liq. 219, 573 (2016)

    Article  CAS  Google Scholar 

  23. J. Sindhu, H. Singh, M. Khurana, Synth. Commun. 45, 202 (2015)

    Article  CAS  Google Scholar 

  24. R. Ghahremanzadeh, G. Imani Shakibaei, S. Ahadi, A. Bazgir, J. Comb. Chem. 12, 191 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the Research Council of University of Sistan and Baluchestan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shaterian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, H., Shaterian, H.R. γ-Fe2O3@SiO2@4-(sulfoamino)butanoic acid as a novel superparamagnetic nanocatalyst promoted green synthesis of 5-(aryl)-5H-spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-trione derivatives. Res Chem Intermed 44, 7519–7538 (2018). https://doi.org/10.1007/s11164-018-3571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3571-1

Keywords

Navigation