Skip to main content
Log in

Modelling of prebiotic synthesis and selection of peptides under isothermal conditions and thermal cycling mode

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The model peptide synthesis from mixtures of amino acids was carried out under the thermal cycling and isothermal modes. The compositions of the obtained mixtures of products and the primary amino acid sequence of the synthesized peptides were determined by Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry in combination with high-performance liquid chromatography with the application of de novo sequencing of the synthesized products. The processes of abiogenous synthesis of peptides were shown to occur under relatively mild temperature conditions and give a substantially less number of peptides as compared with the possible statistical set. The evolution of the system takes place in the process of the synthesis in solid phase with the disappearance of a series of the most unstable peptides. The selection process with the formation of complementary peptides takes place in peptide synthesis under the thermal cyclic mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Galimov, Fenomen zhizni [Phenomenon of Life], Editorial URSS, Moscow, 2001, 256 pp. (in Russian).

    Google Scholar 

  2. J. P. Ferris, Jr. A. R. Hill, R. Liu, L. E. Orgel, Nature, 1996, 381, 59.

    Article  CAS  Google Scholar 

  3. S. W. Fox, J. Chem. Educ., 1957, 34, 472.

    Article  CAS  Google Scholar 

  4. S. W. Fox, The Emergence of Life: Darwinian Evolution from the Inside, Basic Books, New York, 1988, 224 pp.

    Google Scholar 

  5. C. Huber, G. Wächterhäuser, Science, 1998, 281, 670.

    Article  CAS  Google Scholar 

  6. S. A. Kauffman, J. Theor. Biol., 1986, 119, 1.

    Article  CAS  Google Scholar 

  7. S. A. Kauffman, The Origin of Order Self Organization and Selection in Evolution, Oxford Univ. Press, Oxford, 1993, 184 p.

    Google Scholar 

  8. S. L. Miller, L. E. Orgel, The Origins of Life on the Earth, Prentice-Hall, Englewood Cliffs, New York, 1974, 229 pp.

    Google Scholar 

  9. A. I. Oparin, The Chemical Origin of Life, Charles C. Thomas Publ., Springfield, Illinois, 1964, 124 p.

    Google Scholar 

  10. L. E. Orgel, The Origins of Life: Molecules and Natural Selection, John Wiley, New York, 1973, 189 C.

    Google Scholar 

  11. L. E. Orgel, Orig. Life Evol. Biosph., 1992, 28, 227.

    Article  Google Scholar 

  12. G. Wächtershäuser, J. Theor. Biol., 1997, 187, 483.

    Article  Google Scholar 

  13. G. Wächtershäuser, Microbiol. Rev., 1988, 52, 452.

    Google Scholar 

  14. C. Chiarabelli, D. De Lucrezia, Orig. Life Evol. Biosph., 2007, 37, 357.

    Article  Google Scholar 

  15. S. D. Varfolomeev, K. G. Gurevich, Izv. Akad. Nauk, Ser. Khim., 2001, 1629 [Russ. Chem. Bull., Int. Ed., 2001, 50, 1709].

  16. S. D. Varfolomeev, I. V. Uporov, I. A. Gariev, Usp. Khim., 2005, 74, 67 [Russ. Chem. Rev. (Engl. Transl.), 2005, 74, 61].

    Article  Google Scholar 

  17. M. Eigen, P. Shuster, The Hypercycle. A Principle of Natural Self-Organization, Springer-Verlag, Berlin-Heidelberg-New York, 1979, p. 92.

    Google Scholar 

  18. M. Eigen, Self Organization of Matter and the Evolution of Biological Macromolecules, Springer, Berlin, 1971, p. 108.

    Google Scholar 

  19. L. E. Orgel, Nature, 1992, 358, 203.

    Article  CAS  Google Scholar 

  20. L. E. Orgel, Orig. Life Evol. Biosph., 1998, 28, 91.

    Article  CAS  Google Scholar 

  21. W. Szaflarski, K. H. Nierhaus, Orig. Life Evol. Biosph., 2007, 37, 423.

    Article  CAS  Google Scholar 

  22. R. Popa, Between Necessity and Probability: Searching for the Definition and Origin of Life, in Adv. Astrobiol. Biogeophys., Springer-Verlag, Berlin-Heidelberg, 2004, 253 pp.

    Google Scholar 

  23. S. D. Varfolomeev, Mendeleev Commun., 2007, 17, 7.

    Article  CAS  Google Scholar 

  24. S. D. Varfolomeev, O. V. Demina, A. A. Khodonov, A. V. Laptev, E. N. Nikolaev, A. S. Kononikhin, in Problemy zarozhdeniya i evolyutsii biosfery [Problems of Biosphere Origination and Evolution], Ed. E. M. Galimov, Knizhnyi dom “LIBROKOM,” Moscow, 2008, p. 57 (in Russian).

    Google Scholar 

  25. K. Matsubara, T. Nakato, M. Tomida, Macromolecules, 1998, 31, 1466.

    Article  CAS  Google Scholar 

  26. F. Chen, D. Yang, Orig. Life Evol. Biosph., 2007, 37, 47.

    Article  Google Scholar 

  27. A. Commeyras, H. Collet, L. Boiteau, J. Taillades, O. Vandenabeele-Trambouze, H. Cottet, J.-P. Biron, R. Plasson, L. Mion, O. Lagrille, H. Martin, F. Selsis, M. Dobrijevic, Polym. Int., 2002, 51, 661.

    Article  CAS  Google Scholar 

  28. K. Matsubara, T. Nakato, M. Tomida, Macromolecules, 1997, 30, 2305.

    Article  CAS  Google Scholar 

  29. T. Nakato, M. Yoshitake, K. Matsubara, M. Tomida, Macromolecules, 1998, 31, 2107.

    Article  CAS  Google Scholar 

  30. N. L. Benoiton, in Chemistry of Peptide Synthesis, Ed. N. L. Benoiton, Taylor and Francis Group LLC, 2006, p. 172.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Demina.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 419–437, February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demina, O.V., Kononikhin, A.S., Laptev, A.V. et al. Modelling of prebiotic synthesis and selection of peptides under isothermal conditions and thermal cycling mode. Russ Chem Bull 61, 422–441 (2012). https://doi.org/10.1007/s11172-012-0060-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-012-0060-3

Key words

Navigation