Skip to main content
Log in

Crystal structure of amino acid peroxosolvates; X-ray diffraction study of norleucine peroxosolvate

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Norleucine peroxosolvate 2Nle · 3H2O2 was studied by single-crystal X-ray diffraction. There are 16 crystallographically independent amino acid molecules and 24 hydrogen peroxide molecules per asymmetric unit of the crystal structure. The crystal packing of this compounds is typical of mesomorphic crystals. The loose layers of aliphatic moieties alternate with double layers formed by the functional groups of all structural units of the crystal through O-H⋯O or N-H⋯O hydrogen bonds. Some amino acid and hydrogen peroxide molecules are disordered. The character of disorder is considered in terms of frozen dynamics, which suggests the possible mechanism of the involvement of hydrogen peroxide in the transport of bulky natural molecules across cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Churakov, P. V. Prikhodchenko, J. A. K. Howard, O. Lev, Chem. Commun., 2009, 4224; DOI: https://doi.org/10.1039/b906801e.

  2. M. V. Vener, A. G. Medvedev, A. V. Churakov, P. V. Prikhodchenko, T. A. Tripol’skaya, O. Lev, J. Phys. Chem. A, 2011, 115, 13657; DOI: https://doi.org/10.1021/jp207899z.

    Article  CAS  Google Scholar 

  3. P. V. Prikhodchenko, A. G. Medvedev, T. A. Tripol’skaya, A. V. Churakov, Y. Wolanov, J. A. K. Howard, O. Lev, Cryst. Eng. Comm., 2011, 13, 2399; DOI: https://doi.org/10.1039/c0ce00481b.

    Article  CAS  Google Scholar 

  4. M. A. Navasardyan, D. A. Grishanov, T. A. Tripol’skaya, L. G. Kuzmina, P. V. Prikhodchenko, A. V. Churakov, Cryst. Eng. Comm., 2018, 20, 7413; DOI: https://doi.org/10.1039/c8ce01486h.

    Article  CAS  Google Scholar 

  5. A. G. Medvedev, A. A. Mikhailov, P. V. Prikhodchenko, T. A. Tripol’skaya, O. Lev, A. V. Churakov, Russ. Chem. Bull., 2013, 62, 1871; DOI: https://doi.org/10.1007/s11172-013-0269-9.

    Article  CAS  Google Scholar 

  6. G. P. Bienert, J. K. Schjoerring, T. P. Jahn, Biochim. Biophys. Acta Biomem., 2006, 1758, 994; DOI: https://doi.org/10.1016/j.bbamem.2006.02.015.

    Article  CAS  Google Scholar 

  7. L. Chen, A. Y. Lyubimov, L. Brammer, A. Vrielink, N. S. Sampson, Biochemistry, 2008, 47, 5368; DOI: https://doi.org/10.1021/bi800228w.

    Article  CAS  Google Scholar 

  8. G. P. Bienert, A. L. D. Møller, K. A. Kristiansen, A. Schulz, I. M. Møller, J. K. Schjoerring, T. P. Jahn, J. Biol. Chem., 2007, 282, 1183; DOI: https://doi.org/10.1074/jbc.M603761200.

    Article  CAS  Google Scholar 

  9. A. V. Churakov, P. V. Prikhodchenko, J. A. K. Howard, Cryst. Eng. Comm., 2005, 7, 664; DOI: https://doi.org/10.1039/b511834d.

    Article  CAS  Google Scholar 

  10. I. Yu. Chernyshov, M. V. Vener, P. V. Prikhodchenko, A. G. Medvedev, O. Lev, A. V. Churakov, Cryst. Growth Des., 2017, 17, 214; DOI: https://doi.org/10.1021/acs.cgd.6b01449.

    Article  CAS  Google Scholar 

  11. L. G. Kuz’mina, N. S. Kucherepa, S. M. Pestov, A. N. Kochetov, N. S. Rukk, S. A. Syrbu, Crystallography Reports, 2009, 54, 862; DOI: https://doi.org/10.1134/S1063774509050204.

    Article  Google Scholar 

  12. L. G. Kuz’mina, S. M. Pestov, A. N. Kochetov, A. V. Churakov, E. Kh. Lermontova, Crystallography Reports, 2010, 55, 786; DOI: https://doi.org/10.1134/S1063774510050111.

    Article  Google Scholar 

  13. M. A. Gunina, E. Kh. Lermontova, L. G. Kuz’mina, S. M. Pestov, Crystallography Reports, 2012, 57, 733; DOI: https://doi.org/10.1134/S1063774512050057.

    Article  CAS  Google Scholar 

  14. I. I. Konstantinov, A. V. Churakov, L. G. Kuz’mina, Crystallography Reports, 2013, 58, 81; DOI: https://doi.org/10.7868/S0023476113010098.

    Article  CAS  Google Scholar 

  15. L. G. Kuz’mina, M. A. Navasardyan, A. V. Churakov, J. A. K. Howard, Mol. Cryst. Liq. Cryst., 2016, 638, 60; DOI: https://doi.org/10.1080/15421406.2016.1221953.

    Article  Google Scholar 

  16. L. G. Kuz’mina, M. A. Navasardyan, S. I. Bezzubov, Crystallography Reports, 2019, 64, 71; DOI: https://doi.org/10.1134/S0023476119010168.

    Article  Google Scholar 

  17. L. G. Kuz’mina, A. I. Vedernikov, J. A. K. Howard, E. Kh. Lermontova, A. V. Churakov, M. V. Alfimov, S. P. Gromov, J. Struct. Chem. (Engl. Transl.), 2014, 55, 1484; DOI: https://doi.org/10.1134/S0022476614080162.

    Article  Google Scholar 

  18. S. P. Gromov, A. I. Vedernikov, N. A. Lobova, L. G. Kuz’mina, S. N. Dmitrieva, Yu. A. Strelenko, J. A. K. Howard, J. Org. Chem., 2014, 79, 11416; DOI: https://doi.org/10.1021/jo5018074.

    Article  CAS  Google Scholar 

  19. L. G. Kuz’mina, A. I. Vedernikov, J. A. K. Howard, M. V. Alfimov, S. P. Gromov, CrystEngComm, 2015, 17, 4584; DOI: https://doi.org/10.1039/C5CE00653H.

    Article  Google Scholar 

  20. L. G. Kuz’mina, A. I. Vedernikov, J. A. K. Howard, S. I. Bezzubov, M. V. Alfimov, S. P. Gromov, CrystEngComm, 2016, 18, 7506; DOI: https://doi.org/10.1039/C6CE01426G.

    Article  Google Scholar 

  21. L. G. Kuz’mina, A. I. Vedernikov, S. P. Gromov, M. V. Alfimov, Crystallography Reports, 2019, 64, 691; DOI: https://doi.org/10.1134/S0023476119050126.

    Article  Google Scholar 

  22. J. Harada, K. Ogawa, Chem. Soc. Rev., 2009, 38, 2244; DOI: https://doi.org/10.1039/B813850H.

    Article  CAS  Google Scholar 

  23. L. G. Kuz’mina, I. I. Konstantinov, M. A. Navasardyan, Crystallography Reports, 2020, 65, 436; DOI: https://doi.org/10.31857/S0023476120030182.

    Article  Google Scholar 

  24. L. G. Kuz’mina, P. Kalle, E. K. Lermontova, I. I. Konstantinov, Crystallography Reports, 2020, 65, 577; DOI: https://doi.org/10.31857/S0023476120040141.

    Article  Google Scholar 

  25. L. G. Kuz’mina, I. I. Konstantinov, A. V. Churakov, Mol. Cryst. Liq. Cryst., 2018, 664, 95; DOI: https://doi.org/10.1080/15421406.2018.1470134.

    Article  Google Scholar 

  26. M. A. Navasardyan, D. A. Grishanov, P. V. Prikhodchenko, A. V. Churakov, Acta Crystallogr. E, 2020, E76, 1331; DOI: https://doi.org/10.1107/S205698902000972X.

    Article  Google Scholar 

  27. G. M. Sheldrick, SADABS. Program for scaling and correction of area detector data, University of Göttingen, Germany, 1997.

    Google Scholar 

  28. G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (Project No 16-13-10273). We are sincerely grateful to A. G. Medvedev and P. V. Prikhodchenko (N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences) for the crystallization of compound 1 from highly concentrated hydrogen peroxide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Kuz’mina.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 283–291, February, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’mina, L.G., Churakov, A.V. Crystal structure of amino acid peroxosolvates; X-ray diffraction study of norleucine peroxosolvate. Russ Chem Bull 71, 283–291 (2022). https://doi.org/10.1007/s11172-022-3409-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3409-2

Key words

Navigation